

Testing for Radiation Hardness

Dr. ing. Jeffrey Prinzie

Overview of radiation test

- Simulation:
 - MC particle simulators
 - TCAD circuit simulation
- TID:
 - X-ray
 - ⁶⁰Co gamma
- SEE testing
 - Heavy ions
 - Protons
 - Mixed fields
 - Two-Photon Absorption laser testing

Simulation

How to simulate this?

Monte-Carlo nuclear simulation

- Interactions of radiation with matter
- Statistical, chance of certain interactions (ionization, scattering, displacement, nuclear reactions): cross section
- Monte-Carlo simulators:
 - MCNP
 - GEANT4 (Geometry and Tracking 4)
 - FLUKA (Fluktuierende Kaskade)
 - SRIM/TRIM Stopping tables
- **GOAL:** Find ionization energy in the silicon (~LET)

Monte-Carlo nuclear simulation

TCAD simulation

- "Technology Computer Aided Design"
- Simulation of semiconductor devices
- Transient analysis of charges
- Particle e-h pair generation
 = impulse charge
- GOAL: Find collection current waveform
- Time consuming simulation!
- 2D and 3D
- Vendors: Synopsys TCAD; Robustchip; Silvaco

Simulation

Test Facilities

Overview of radiation test

- Simulation:
 - MC particle simulators
 - TCAD circuit simulation
- **TID**:
 - X-ray
 - ⁶⁰Co gamma
- SEE testing
 - Heavy ions
 - Protons
 - Mixed fields
 - Two-Photon Absorption laser testing

X-ray radiation testing (ADVISE lab)

- 3 kW X-ray source
 - Roentgen tube
 - 60 kV electron accelerator
 - 50 mA current
- 0.5 MGy / 12h
- Efficiency ~1%
 - Extensive cooling needed!
- Some have rotating target

X-ray Filter

- Aluminum filter
- 150 µm thick
- < 8-10 keV

V. De Smedt, J. Prinzie - Testing for Radiation Hardness

1.12

VEPL

Pt-

Gamma irradiation facilities

RITA: Co⁶⁰ under-water irradiation facility

Available volume (max): Ø38 cm, h = 60 cm (with some conditions Ø43 cm) Ambient temperature: 26-27°C Temperatures up to **250 °C** are possible with an oven (smaller volume)

Container in the irradiation position: Co⁶⁰ sources emit blue light – Cherenkov radiation

Cylindrical Container for irradiated samples

Available dose-rates: 50 - 700 Gy/h. The dose-rate is adjusted by changing the position of Co^{60} sources and changing the vertical position of the samples in the chamber, max dose-rate over ~15 cm height (<10% gradient)

Overview of radiation test

- Simulation:
 - MC particle simulators
 - TCAD circuit simulation
- TID:
 - X-ray
 - 60Co gamma
- SEE testing
 - Heavy ions
 - Protons
 - Mixed fields
 - Two-Photon Absorption laser testing

Cyclotron as a Radiation Source

- Invented by Ernest O. Lawrence
 - Berkeley, 1929 (NP Phys. 1939)
- More compact than lin. accelerator

Cyclotron @ UCL

 $E=rac{1}{2}mv^{2}=rac{q^{2}B^{2}R^{2}}{2m}$ $f=rac{qB}{2\pi m}$

Cyclotron @ UCL

- CYCLONE110 (CYClotron de LOuvain-la-NEuve)
- A multiparticle, variable energy cyclotron accelerator: M/Q ~ 3.3
 - Protons up to 65 MeV,
 - Deuterons up to 50 MeV
 - Alpha particles up to 110 MeV
 - Heavy ions up to an energy of 110 Q²/M MeV (where Q is the charge and M the mass of the ion).
- Flux up to 10⁴ particles/s.cm²
- 25 mm diameter
- Experimental tube is vacuum! Power dissipation is often an issue

Cyclotron @ UCL

~ C/µm in Silicon

M/Q	Ion	DUT energy [MeV]	Range [µm Si]	LET [MeV/mg/cm ²]
3.25	¹³ C ⁴⁺	131	269.3	1.3
3.14	²² Ne ⁷⁺	238	202.0	3.3
3.37	²⁷ AI ⁸⁺	250	131.2	5.7
3.33	⁴⁰ Ar ¹²⁺	379	120.5	10.0
3.31	⁵³ Cr ¹⁶⁺	513	107.6	16.0
3.218	⁵⁸ Ni ¹⁸⁺	582	100.5	20.4
3.35	⁸⁴ Kr ²⁵⁺	769	94.2	32.4
3.54	¹²⁴ Xe ³⁵⁺	995	73.1	62.5

Synchrotron

- Particles accelerated in cavities
 - Particles move in circular shape (no spiral)
- Magnets bend particles
- Experiments are organized around accelerator
- Accelerators have "limited" energy range

→ magnets need to be tuned to keep beam inside

• Usually large accelerator complex

Synchrotron

Charm Facility

- Cern High Energy AcceleRator Mixed Field/Facility
- Proton synchrotron (24 GeV)
- Target to create secondary particles
- Large targets possible
 - Entire satellites
 - Large systems
- Automatic loading
- Movable shielding

Laser SEE testing

- Particle accelerators $\rightarrow \in \in \in$
- Measurements are stochastic \rightarrow difficult to debug.

Laser testing:

- Generate electrons in the Silicon (photon requires ~3.6 eV)
- Alternative to heavy-ion testing
- Single-photon absorption (SPA) and two-photon absorption (TPA)
- Locate sensitive regions in the chip (2D and 3D for TPA)
- No ionizing radiation needed

 $\Delta E = hc/\lambda$

Single vs. two photon absorption

Two-Photon Laser experiments

 $-rac{dI}{dz}=lpha I+eta I^2$

[Z. Huang]

Single vs. two photon absorption

Thank you!

