

United Nations Scientific Committee on the Effects of Atomic Radiation

Methodology for estimating public exposures due to radioactive discharges

Jane Simmonds

7 December 2018

Background

- UNSCEAR has used a series of methodologies for many years to carry out radiological assessments.
- In 2008 the committee decided to update the methodology and to use it to assess radiation exposures from electricity generation.
- Work took many years with a delay due to the need to concentrate resources on the Fukushima assessment
- Methodology published as part of the UNSCEAR 2016 report.

Aim of methodology

- To assess individual and collective doses from routine (continuous) discharges to environment.
- Characteristic individuals not representative person
- For use by Committee for worldwide assessments not all situations and uses (not for accidents, risk assessments or regulatory purposes).
- Discharges to atmosphere, rivers, lakes and seas.

Requirements

- Methodology should be robust, transparent and applicable to different electrical energy sources
- It should build on previous methodologies taking account of updates in the field
- Doses per unit discharge should be provided for key radionuclides
- Although intended for global application regional variations should be considered
- Methodology implemented through Excelworkbooks.

Input and review

- A number of people involved:
 - Consultants
 - Technical review committee
 - UNSCEAR Member states
 - Secretariat
- Workbooks developed by staff from Public Health England in the UK

Characteristic Individual

 Aim to represent "average" person not "representative person" / "critical group"

 Live 5 km from discharge point for atmospheric discharges

Live in area around receiving water body for aquatic discharges

25 % of food is locally produced

Radionuclides considered

 29 important radionuclides for routine discharges from all energy sources

 Global circulation considered for tritium, carbon-14, krypton-85 and iodine-129

 Included progeny notably for radon-222, thorium-232 and uranium-238

Endpoints

- Characteristic individual effective dose in the 100th year of discharge at a rate of 1 Bq/s (Sv)
- Collective doses (man Sv) integrated to 100 y from discharge at a rate of 1 Bq/s for 1 year (local and regional)
- For globally circulating radionuclides only collective dose integrated to 100, 500 and 10,000 years.

Exposure pathways

- Discharge to atmosphere:
 - Inhalation
 - External exposure to radionuclides in the cloud and deposited on the ground
 - Ingestion of terrestrial foods
- Discharge to water bodies:
 - Ingestion of aquatic foods and drinking water (freshwater bodies only)
 - External exposure from radionuclides on freshwater and marine sediments
 - Irrigation of terrestrial foods

UNEP Regions

winsceair. Oirg

Regional information

- Six regions considered (Africa; Asia and Pacific; Europe; Latin America and Caribbean; North America; West Asia) plus "world average".
- Population distributions (default plus around nuclear power stations)
- Per-caput consumption rates of terrestrial foods, marine and freshwater foods
- Irrigation rates and transfers

Limitations of methodology

- Generic intended for use throughout world not for site specific studies
- Aim to be as realistic as possible hard to quantify uncertainties.
- Characteristic individual doses dependent on 25% local food assumption
- Collective doses dependent on population distributions
- Many other factors discussed in report.

Individual dose – marine discharge Sv (1 Bq/s for 100 y)

Region	Carbon-14	Polonium-210
Africa	3.2 10*-11	1.0 10*-8
Asia and Pacific	1.0 10*-10	1.4 10*-7
Europe	9.4 10*-11	7.5 10*-8
Latin America	4.5 10*-11	4.0 10*-8
North America	1.1 10*-10	1.5 10*-7
West Asia	2.6 10*-11	1.3 10*-8

Collective dose atmospheric discharge Caesium-137 man Sv

Region	Local	Regional
Africa	3.5 10*-5	1.7 10*-4
Asia and Pacific	1.4 10*-4	6.8 10*-4
Europe	7.9 10*-5	3.8 10*-4
Latin America	7.6 10*-5	3.6 10*-4
North America	2.2 10*-5	1.0 10*-4
West Asia	5.0 10*-5	2.4 10*-4
World average	8.5 10*-5	4.1 10*-4

Ackowledgements

uinsceair. oirg

- Current methodology builds on previous work of the Committee and takes account of valuable comments from Member States plus material provided.
- Significant input by previous consultants, PHE staff, other experts and members of the Expert Group as well as from the secretariat.

