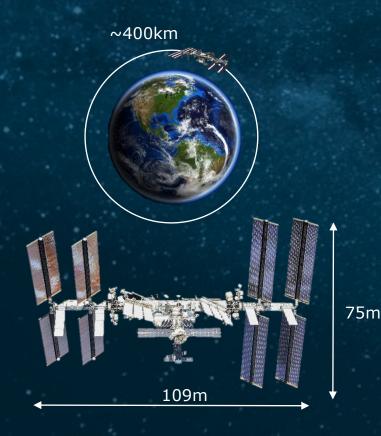


Radiation Protection in Spaceflight

Anna Fogtman Crew Exploration Scientist Space Medicine Team & SciSpacE, HRE-RS European Astronaut Centre, European Space Agency

18/06/2021


ESA UNCLASSIFIED - For ESA Official Use Only

Challenges of spaceflight: LEO and Beyond

3000km

Low Earth Orbit - ISS: Known medical risks, Constant communication, Access to Earth, Minimum autonomy

6-8 Crewmembers

6 month crew missions

~338m³ habitable volume

Earth LEO of 90 min.

Emergency return within hours

Real-time audio/video

Moon – Gateway & surface: Mostly known medical risks (short duration), Small delay in communication, Access to Earth within days, Greater autonomy required

~30m

2-4 Crewmembers

Ť**Ť**Ť

()

/!\

V.

30-90 day crew missions

~25-25m³ habitable volume + 11m³ Orion

Moon NRHO of 7days, 380000km from Earth

Emergency return up to 10 days

Constant communication with ~5 sec. delays Difficult remote guiding/teleoperating Near-rectilinear halo orbit

70000km

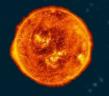
~40m

Space Radiation Environment

Constant Solar Wind Solar Energetic Particles Solar Particle Events (SPE) Coronal Mass Ejections **Constant Solar Wind**

Galactic Cosmic Rays (GCR)

Spaceflight – related radiation exposures


Radiation sources

Primary particles

Galactic Cosmic rays (GCR)

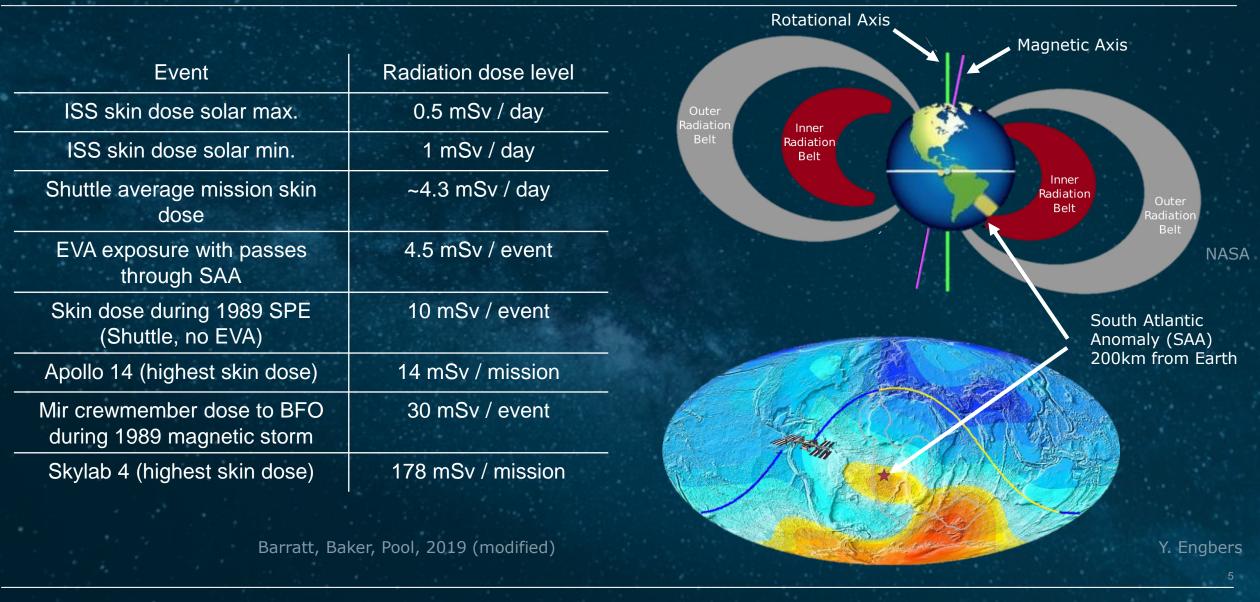
Earth radiation belts

Solar Particle Events (SPE)

87% Protons 12% Helium 1% Heavy nuclei 100 MeV – 100 GeV

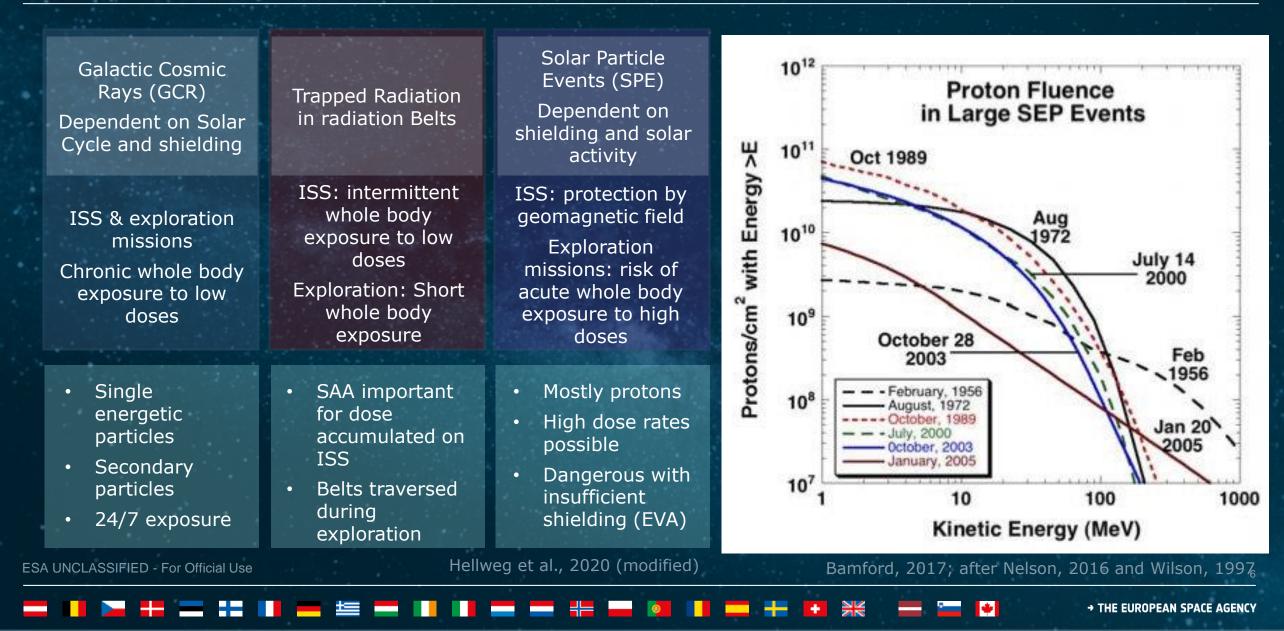
Electrons & Protons 1k – 12k km 1 – 5 MeV 13k – 60k km 10 – 100 MeV

> 92% Protons 6% Helium 2% Heavy nuclei keV – 100 MeV


Neutrons Protons Electrons X-rays Gamma rays Recoil heavy nuclei

Secondary particles

Barratt, Baker, Pool, 2019 (modified)


Spaceflight – radiation exposure levels

Radiation exposures in LEO & BLEO

Radiation - induced effects

Deterministic

- Severity dependent ("determined") on the dose
- Effect only when exposure exceeded threshold
- Damage of large amount of cells
- Usually short latency
- Acute radiation syndrome
- Chronic post-radiation syndrome (cataract, radiation dermatitis)
- Sterility

- Real-time dosimetry
- Storm shelter & protocols on board
- Limited medical care on board

Stochastic

- Probability increases with the dose (not the severity!)
- No "safe" threshold
- Damage of single cell can be enough to cause effect
- Manifestation delayed (typically years)
- Somatic mutation (cancer)
- Germline mutation (inherited genetic disease)
- Degenerative/chronic diseases

• Real-time dosimetry

NASA

Radiation Risk Assessment

Radiation Protection for human spaceflight

Short-term dose limits to prevent deterministic effects

Consensus dose limits for BFO adopted by MMOP

Organ specific equivalent dose limits for BFO

30 Days	0.25 Sv
Annual	0.50 Sv

ESA equivalent dose limits

Organ specific equivalent dose limits for BFO | Eye | Skin

30 Days	0.25 0.5 1.5 Sv
Annual	0.50 1 3 Sv

After Straube et al., 2010

NASA

Career dose limit / threshold risk estimate to prevent stochastic effect

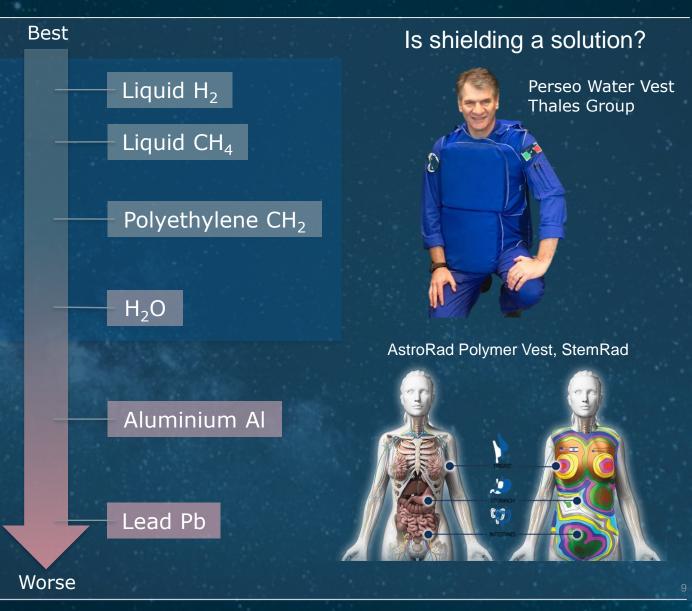
- ESA career limit of 1 Sv (ICRP 60)
- RSA 10% excess total radiation risk (cancer and non-cancer)
- NASA 3% probability of lifetime excess cancer mortality risk (REID) – NASA Space Radiation Cancer Risk (NSCR) Model

REID indicates that 3 people per 100 may die from cancer due to exposure, but it doesn't tell, if there are other, non-cancer threats, and it doesn't give recommendations whether it's worth to take the risk and if so, who and when will die

Age at exposure	Females	Males
30	0.6	0.78
40	0.7	0.88
50	0.82	1.0
60	0.98	1.17

Radiation protection beyond Low Earth Orbit

Redefining New Standards for Deep Space Exploration


ICRP Task Group 115 Risk and Dose Assessment for Radiological Protection of Astronauts

Recommendations by The Radiation Health Working Group (RHWG) to the Multilateral Medical Operations Panel (MMOP)

Adaptations of the RHWG recommendations by the MMOP

Gateway Crew Health and Performance requirements

Operational Radiation Protection for spaceflight

Science for & in Space: Radiation Research Opportunities

On the Ground

Investigations into Biological Effects of Radiation

- AO IBER (GSI)
- CORA IBER (GANIL, AGOR KVI-CART, HIT, UPTD, TIFPA)
- GSI-FAIR opening soon

On the International Space Station

Announcement of Opportunities

- DOSIS 3D environmental radiation monitoring
- LUX in space to study DDR under microG with the use of UV source for DNA damage
- Exobiology facility externally to the ISS on the Bartolomeo platform to study the effects of radiation exposure on biological and chemical samples

On the Moon Orbit, Gateway Station and beyond

Artemis -I

5 ESA Active Dosimeters (EADs) measuring radiation environment inside ORION spacecraft during uncrewed mission around the Moon

Gateway

Research Announcement for Heliophysics Environmental and Radiation Measurement Experiment Suite (HERMES) Interdisciplinary Science Teams – in cooperation with NASA

Research Announcement for European Radiation Sensor Array (ERSA) International Science Team – research announcement opening soon

Internal Dosimeter Array (IDA) - research announcement opening soon

Moon

ESA's European Large Logistics Lander (first payloads selected in 2022)

Mars

Earth Return Orbiter (ERO) (payload concept under development)

Thank you

