Radiation protection of eye lenses and brain tissue of interventional cardiologists

Edilaine Honorio da Silva

ehdsilva@sckcen.be
Radiosensitivity is related to reproductive activity of a tissue (Bergonié and Tribondeau, 1906)

- **Eye lens:** high radiosensitivity
 - even more radiosensitive than previously accepted

- **Brain:** low radiosensitivity
 - but perhaps not as low as currently assumed

Both tissues of interventional cardiologists have been of interest in recent years
Eye lenses: radiation induced cataracts

- Germinative cells are located in the front layer and equatorial regions of the lens
- When irradiated, they fail to differentiate properly into lens fibers
- These cells, then, migrate to the posterior region of the lenses, leading to posterior subcapsular cataract (PSC)
- 3x more common in interventional cardiologists than in unexposed individuals*

ICRP Publication 60 (1990)

- Threshold:
 - Visual impairment:
 - Single exposure: 5 Gy
 - Fractionated exposure: > 8 Gy
 - Detectable opacities:
 - Single exposure: 0.5 – 2.0 Gy
 - Fractionated exposure: 5 Gy

- Annual dose limit: 150 mSv

Short follow up period!
ICRP Publication 103 (2007)

- Threshold:
 - Visual impairment:
 - Single exposure: 5 Gy
 - Fractionated exposure: > 8 Gy
 - Detectable opacities:
 - Single exposure: 0,5 – 2,0 Gy
 - Fractionated exposure: 5 Gy

- Annual dose limit: 150 mSv

Same values were kept - **Possibility** for higher radiosensitivity was indicated

Longer follow up period!
ICRP Statement on Tissue Reactions (2011)

- Threshold:
 - Visual impairment:
 - Single exposure: 5 Gy
 - Fractionated exposure: > 8 Gy
 - Detectable opacities:
 - Single exposure: 0.5 – 2.0 Gy
 - Fractionated exposure: 5 Gy

- Annual dose limit: 150 mSv

- Threshold:
 - 0.5 Gy

- Annual dose limit: 20 mSv
Eye lens dose limits

- Included in the Basic Safety Standards

- Included in the 2013/59/Euratom Directive
 February 2018
Interventional Cardiology

- Interventional procedures

Average effective doses to monitored workers

- Doctors (cardiologists): 3.97 mSv
- Doctors (orthopaedists): 0.54 mSv
- Nurses: 0.70 mSv
- Others: 0.67 mSv
Eye lens doses in interventional cardiology

<table>
<thead>
<tr>
<th>Table 1. Mean measured $\langle H_p(3) \rangle$ per procedure ± 1 s.d., number of procedures per year and estimated annual dose for physicians.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle H_p(3)/\text{proc} \rangle$ ± 1 s.d.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Phys. 1</td>
</tr>
<tr>
<td>Phys. 2</td>
</tr>
<tr>
<td>Phys. 3</td>
</tr>
<tr>
<td>Phys. 4</td>
</tr>
<tr>
<td>Phys. 5</td>
</tr>
<tr>
<td>Phys. 6</td>
</tr>
<tr>
<td>Phys. 7</td>
</tr>
<tr>
<td>Phys. 8</td>
</tr>
<tr>
<td>Phys. 9</td>
</tr>
</tbody>
</table>

=> Interventional cardiologists need monitoring!
Protection devices

A

B

C

D

J. Čaluk - Radiation Principles and Safety
Protection devices

Table 2. Reduction factors for various factors affecting the eye lens dose.

<table>
<thead>
<tr>
<th>Factor affecting the eye lens dose</th>
<th>Reduction factor</th>
<th>Remark</th>
<th>Way of calculation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling suspended screen</td>
<td>5.7</td>
<td></td>
<td>Measurements on phantom</td>
<td>van Rooijen et al (2014)</td>
</tr>
<tr>
<td>Ceiling suspended screen</td>
<td>2.3</td>
<td>Average of 25 setups</td>
<td>Simulations</td>
<td>Koukorava et al (2014)</td>
</tr>
<tr>
<td>Ceiling suspended screen</td>
<td>1.3–14</td>
<td>Depending on beam angle and position of the shield</td>
<td>Simulations</td>
<td>Koukorava et al (2011)</td>
</tr>
<tr>
<td>Ceiling suspended screen</td>
<td>30</td>
<td>Depending on tube orientation</td>
<td>Measurements with phantoms</td>
<td>Galster et al (2013)</td>
</tr>
<tr>
<td>Ceiling suspended screen</td>
<td>33</td>
<td>With the assumption that the screen is not always used throughout the procedure</td>
<td>Measurements with phantoms</td>
<td>Vano et al (2008)</td>
</tr>
<tr>
<td>Ceiling suspended screen</td>
<td>20</td>
<td>Depending on angle of incidence and body height</td>
<td>Measurements (Scatter entrance skin air kerma to the operator position)</td>
<td>Kuon et al (2003)</td>
</tr>
<tr>
<td>Ceiling suspended screen</td>
<td>1.5–4</td>
<td></td>
<td>Measurements</td>
<td>Vanhavere et al (2011)</td>
</tr>
<tr>
<td>Ceiling suspended screen</td>
<td>2–7</td>
<td></td>
<td>Measurements and simulations</td>
<td>Carinou et al (2011)</td>
</tr>
</tbody>
</table>
Protection devices

Table 2. Reduction factors for various factors affecting the eye lens dose.

<table>
<thead>
<tr>
<th>Factor affecting the eye lens dose</th>
<th>Reduction factor</th>
<th>Remark</th>
<th>Way of calculation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead glasses</td>
<td>5</td>
<td></td>
<td>Measurements on phantom and simulations</td>
<td>McVey et al (2013)</td>
</tr>
<tr>
<td>Lead glasses</td>
<td>8–10</td>
<td>Depending on the orientation of the operator’s head and type of glasses</td>
<td>Measurements on phantom</td>
<td>Van Rooijen et al (2014)</td>
</tr>
<tr>
<td>Lead glasses</td>
<td>5–10</td>
<td>Depending on the position of the operator and beam angulation.</td>
<td>Measurements on phantom</td>
<td>Thornton et al (2010)</td>
</tr>
<tr>
<td>Lead glasses</td>
<td>8</td>
<td></td>
<td>Measurements</td>
<td>Moore et al (1980)</td>
</tr>
<tr>
<td>Lead glasses</td>
<td>8–10</td>
<td></td>
<td>Measurements</td>
<td>Vanhaver et al (2011)</td>
</tr>
<tr>
<td>Lead glasses</td>
<td>33</td>
<td>Fluoroscopy, cine cardiac imaging and digital subtraction angiography</td>
<td>Measurements with phantoms</td>
<td>Vano et al (2008)</td>
</tr>
<tr>
<td>Lead glasses</td>
<td>10</td>
<td>Various thicknesses of glasses, and positions of the operator</td>
<td>Simulations</td>
<td>Koukorava et al (2014)</td>
</tr>
</tbody>
</table>
How to assess the eye lens dose?

- Dose reduction with lead glasses varies with several parameters
- Dosemeters available are big and not practical

How to assess the eye lens dose?

- Dose reduction with lead glasses varies with several parameters
- Dosemeters available are big and not practical
- Influence of the dosemeter’s position?

- Wraparound and flat lenses
- Beam projections
- Access
- Orientation of the head

Position of the dosemeter

- Best correlation with the dose to the eye lenses
- Higher overestimation

Position of the dosemeter

- Best correlation with the dose to the eye lenses

- Dosemeters are not as shielded as the eye lenses

Radiosensitivity is related to reproductive activity of a tissue (Bergonié and Tribondeau, 1906)

Eye lens: high radiosensitivity
- even more radiosensitive than previously accepted

Brain: low radiosensitivity
- but perhaps not as low as currently assumed

Both tissues of interventional cardiologists have been of interest in recent years
Radiosensitivity: brain

- **Low radiosensitivity**
 - **Children** - radiotherapy:
 - mean dose 1.5 Gy -> relative risk for glioma = 2.6\(^1\)
 - **Adults** - atomic bomb survivors
 - 0.3 – 0.6 Gy -> **no incidence** of tumors in the nervous system\(^1\)

\(^1\) Inskip et al Epidemiol. Rev (1995), 382-414
http://radsurg.health.ufl.edu/patients/understanding-radiosurgery.shtml
Radiosensitivity: brain

- ICRP Publication 103 (2007)
 Cancer risk to the brain perceived as higher than before: $w_T = 0.01$

- Radiologic technologists1
 Brain cancer mortality: ~ 2 fold increase
 Small cohort: 26 individuals exposed

- Workers at uranium processing plant2
 30% higher mortality caused by brain tumor

1Rajamaran et al., Am J Roentgenol 2016;1101-1109
2Dupree-Ellis et al., Am J Epidemiol 2000;91-95
Radiosensitivity: brain

Brain and Neck Tumors Among Physicians Performing Interventional Procedures

Ariel Roguin, MD, PhDa,*, Jacob Goldstein, MDb, Olivier Bar, MDc, and James A. Goldstein, MDd

- 31 case-report of brain tumor
- 22 were on the left side (85%)
Brain: protection devices

http://www.pnwx.com/Accessories/LeadProducts/Caps/
Efficiency of protection devices in reducing the brain dose

Efficiency of protection devices in reducing the brain dose

Different beam projections, brachial access

Images replicated from EuroIntervention, submitted 22/08/2017, currently still under review, Silva et al, Effect of protective devices in the radiation dose received by the brain of interventional cardiologists, Copyright (2017), with permission from Europa Digital & Publishing.
Efficiency of protection devices in reducing the brain dose

- Ceiling suspended screen were the most efficient device
 > 70% reduction of the brain dose

- Protection of lead caps strongly depends on their shape

- Lead glasses can reduce the dose in the brain by about 10% (no difference between wraparound or flat lenses)
Ceiling suspended screen

- Distance from the patient decreases its efficiency, specially in PA projection
- Large suspended ceiling screens offer slightly better protection than small ones (~10%)
Lead caps

Major source of radiation to the medical staff: *patient*
Lead caps

Dose reduction: Brain

- $D_R = 10\%$
- $D_R = 60\%$
- $D_R = 35\%$

Dose reduction: Dosemeters

- $D_R = 74\%$
- $D_R = 91\%$
- $D_R = 88\%$
Summary

- Eye lens
 A small dosimeter placed close to the bridge of the glasses has the best correlation with the eye lens dose

- Brain
 - Ceiling suspended screen offer the best protection
 - Efficiency of lead caps depends on their shape
 - Dosemeters under the cap are better shielded than the brain
Thanks for your attention!

Acknowledgements:
Filip Vanhavere, PhD (SCK•CEN)
Prof. Nico Buls (VUB)
Lara Struelens, PhD (SCK•CEN)
Peter Covens, PhD (VUB)