Clearance practices applied within Thetis & BR3 decommissioning projects

Sven Boden, Luc Ooms (SCK•CEN)

sven.boden@sckcen.be, luc.ooms@sckcen.be

Isabelle Meirlaen, Myriam Monsieurs, Hubert Thierens (UGent)

isabelle.meirlaen@ugent.be, myriam.monsieurs@ugent.be, hubert.thierens@ugent.be

To clear or not to clear, BVS-ABR, September 11th, 2015, Brussels
Clearance practices applied within Thetis & BR3 decommissioning projects

- Thetis & BR3: similarities & differences
- Clearance of solid materials
- Clearance of the buildings (including recent developments)
- Concluding remarks
Clearance practices applied within Thetis & BR3 decommissioning projects

- Thetis & BR3: similarities & differences
- Clearance of solid materials
- Clearance of the buildings (including recent developments)
- Concluding remarks
Different facility types might require different strategies. BR3 and Thetis are both reactors.

The Nuclear Fuel Cycle

Source: NRC

© SCK•CEN Academy
Operational data sheets for Thetis and BR3

Differences in operation & size

<table>
<thead>
<tr>
<th></th>
<th>Thetis</th>
<th>BR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Open pool</td>
<td>Pilot PWR</td>
</tr>
<tr>
<td>Principle</td>
<td>LEU, light water Graphite moderated</td>
<td>Various fuels (e.g. UO$_2$, MOX), various moderators, control rods</td>
</tr>
<tr>
<td>Power</td>
<td>150 kW (max. 250 kW)</td>
<td>41 MWth (10.5 MWe)</td>
</tr>
<tr>
<td>Size pool/reactor</td>
<td>diameter = 3.0 m, height = 7.5 m</td>
<td>diameter = 1.4 m, height = 5.0 m</td>
</tr>
<tr>
<td>Main use</td>
<td>Production of radioisotopes (medical applications) Activation analyses</td>
<td>Demonstration Qualification of fuel elements Training Centre Development of new technologies</td>
</tr>
</tbody>
</table>
Clearance practices

Important parameters to take into consideration

<table>
<thead>
<tr>
<th></th>
<th>Thetis</th>
<th>BR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of the facility</td>
<td>1967</td>
<td>1962</td>
</tr>
<tr>
<td>Type of installation</td>
<td>Open pool RR</td>
<td>Pilot PWR</td>
</tr>
<tr>
<td>Total size buildings/installations</td>
<td>Small</td>
<td>Rather small</td>
</tr>
<tr>
<td>Main use</td>
<td>Production of radioisotopes Activation analyses</td>
<td>Development of new technologies Electricity production</td>
</tr>
<tr>
<td>Important radionuclides</td>
<td>Typical contamination/activation (e.g. Cs-137, Co-60) Typical experiments labs (e.g. H-3)</td>
<td>Typical contamination/activation (e.g. Cs-137, Co-60)</td>
</tr>
<tr>
<td>Main process conditions</td>
<td>Aqueous, low temperature, atmospheric pressure</td>
<td>Aqueous, high temperature, high pressure</td>
</tr>
<tr>
<td>Radiation protection program during operation Zoning & control measurements</td>
<td>Medium control measurements at room level (bigger laboratory environment)</td>
<td>Limited control measurements at room level (semi industrial scale environment)</td>
</tr>
<tr>
<td>Incidents during operation</td>
<td>None (limited)</td>
<td>Medium</td>
</tr>
<tr>
<td>Known contaminated areas in the building & hazards</td>
<td>Rather limited</td>
<td>Medium</td>
</tr>
<tr>
<td>Examples of levels of contamination</td>
<td>Ion-exchange resins primary loop (Co-60-Mn-54) -> x1000 Highest radiation level installation -> x1000 Highest hotspot building structure -> > x1000</td>
<td></td>
</tr>
</tbody>
</table>
Clearance practices applied within Thetis & BR3 decommissioning projects

- Thetis & BR3: similarities & differences

- Clearance of solid materials

- Clearance of the buildings (including recent developments)

- Concluding remarks
Balances of solid materials removed from site excl. fuel, liquids, building

<table>
<thead>
<tr>
<th>Activity Bq.g⁻¹</th>
<th>HLW</th>
<th>MLW</th>
<th>LLW</th>
<th>Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E+09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thetis open pool
- Status 2015 – after decommissioning
 - Relatively “clean” installation
 - No focus on decontamination necessary
- Activity distribution:
 - HLW: 3%
 - MLW: 5%
 - LLW: 92%

BR3 pilot PWR
- Status 2013 – advanced decommissioning
 - Medium “clean” installation
 - Focus on decontamination necessary
- Activity distribution:
 - HLW: 7%
 - MLW: 2%
 - LLW: 91%

Total mass >30x
Various release methodologies are being applied: > 2/3 generic & straightforward, but labor intensive.

- History surface contamination monitor (direct)
- Surface contamination monitor (direct 2 x 100%)
- Smear tests surface contamination monitor (fast scan) total gamma
- HR gamma spectrometry
- Sampling & DA HR gamma spectrometry (in situ)
- Surface contamination monitor (fast scan) total gamma HR gamma spectrometry
- Batch specific

Example: BR3 pilot PWR
Clearance practices applied within Thetis & BR3 decommissioning projects

- Thetis & BR3: similarities & differences
- Clearance of solid materials
- Clearance of the buildings (including recent developments)
- Concluding remarks
Building release room & element categorization

Thetis & BR3

<table>
<thead>
<tr>
<th>categorie</th>
<th>description</th>
<th>contamination</th>
<th>decontamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>contamination = excluded</td>
<td>0</td>
<td>not required</td>
</tr>
<tr>
<td>3</td>
<td>contamination = not likely</td>
<td>1</td>
<td>coating removal</td>
</tr>
<tr>
<td>2</td>
<td>contamination = possible</td>
<td>2</td>
<td>base material removal</td>
</tr>
<tr>
<td>1</td>
<td>contamination/activation = present</td>
<td>3</td>
<td>liquids possible migration</td>
</tr>
</tbody>
</table>

BR3 pilot PWR

<table>
<thead>
<tr>
<th>category</th>
<th>contamination risk</th>
<th>decontamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>cold excluded</td>
<td>not required</td>
</tr>
<tr>
<td>1</td>
<td>suspected</td>
<td>not confirmed</td>
</tr>
<tr>
<td>2</td>
<td>contaminated</td>
<td>confirmed no migration</td>
</tr>
<tr>
<td>3</td>
<td>severely contaminated</td>
<td>possible migration</td>
</tr>
<tr>
<td>4</td>
<td>activated</td>
<td>activation</td>
</tr>
</tbody>
</table>
Building release working method simplified schemes for Thetis & BR3

Thetis open pool

- History ↔ Nuclide vector
- Control measurements during & after dismantling
- Final characterization
- Decontamination necessary
- Release of the Thetis building

BR3 pilot PWR

1. Inventory
2. Preliminary Classification
3. Detailed Characterization
4. Fine Tuning Classification
5. Determination Decontamination Technique
6. Decontamination
7. Characterization for Clearance
8. Denuclearization
BR3: detailed characterization prior to decontamination contamination depth: development of an NDA method

traditional

NDA & geostatistical data treatment

multiple photo peak method
Contamination depth recent developments

- HR-ISGS (HPGe), MR-ISGS (CZT, LaBr3), total beta, dose rate, gamma camera
- Geostatistical data treatment
The use of in-situ gamma spectroscopy in view of building release
Clearance practices applied within Thetis & BR3 decommissioning projects

- Thetis & BR3: similarities & differences
- Clearance of solid materials
- Clearance of the buildings (including recent developments)
- Concluding remarks
Clearance practices applied within Thetis & BR3 decommissioning projects

- Similarities in the implementation of clearance practices in different decommissioning projects are existing.

- However, the implementation can be very different depending on the installation, size of building & installation, main use, radionuclides involved, main process conditions & hazards (aerosol, aqueous liquids, strong acids/alkaline, radiation protection program during operation, zoning & control measurements, history of incidents, knowledge of the installation/incidents, etc.).

- Therefore, harmonization is only possible to some extent.

- Development is still ongoing.
Thank you for your attention. Questions?
Copyright © 2015 - SCK•CEN

All property rights and copyright are reserved. Any communication or reproduction of this document, and any communication or use of its content without explicit authorization is prohibited. Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN
Studiecentrum voor Kernenergie
Centre d'Etude de l'Energie Nucléaire
Belgian Nuclear Research Centre

Stichting van Openbaar Nut
Fondation d'Utilité Publique
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSEL
Operational Office: Boeretang 200 – BE-2400 MOL