Large Eddy Simulation of radioactive pollutant dispersion over an open field for time-dependent dose assessment

PUBLIC VERSION

Lieven Vervecken1,2 , Johan Camps1 , Johan Meyers2

1 SCK\textbullet{}CEN, Belgian Nuclear Research Center, Belgium
2 Department of Mechanical Engineering, KU Leuven, Belgium

BVS-ABR Scientific Meeting
Brussels, September 19, 2014
Introduction
Transport model
Case study
Ongoing research
Personal background

- Master in Mechanical Engineering (2010)
- Master in Nuclear Engineering (2011)
- PhD program (2011-pres)
60 years of **experience** in nuclear research and technology

Most **recent** knowledge and development

Innovative projects

Availability of **large and unique** nuclear installations
Manages all education and training activities – in the broadest sense:

1. Guidance young researchers
 • Thesis (PhD, Master, Bachelor level), post-docs, internships, educational visits

2. Organization of courses
 • Contribution to academic learning
 • Customized training for professionals

3. Policy support
 • Framework programs, H2020, expert groups of IAEA, OECD, ...

4. Research transdisciplinary aspects
 • Scientific/technical + context! (ethical, economical, political, ...)
Accurate modeling results in effective countermeasures

- Release of radioactive pollutants
 - Controlled release
 - Explosion
 - Fire

- Dispersion simulation & dose estimation
 - Link measurements to source term

- Countermeasures
 - Sheltering
 - Evacuate
 - Iodine intake
Existing models not conclusive for the near-range

- Local scale: 500 m
- Meso scale: 50 km
- Long range: 500 km

[TIC at ground level (Bq s m⁻²)

- H_{eff} = 72 m
- Pasquill: D / Bultynck-Malet: E3
- No rain

[Graph showing decay of TIC with distance]

[Camps et al, 2010]
Several applications for this model

Licensing phase
- Building configuration of new installations

Preparedness phase
- Positioning of monitoring stations
- Drawing of evacuation routes

Response phase
- Source term estimation
- Intervention planning
Several applications for this model

- Account for
 - Complex air flow (~buildings, vegetation)
 → Computation fluid dynamics (CFD)
 - Variability due to atmospheric effects
 → Large Eddy Simulation (LES) turbulence modeling

At the near-range, can we use instantaneous or time-averaged gamma dose rate measurements to estimate the skin dose rate or inhalation dose rate?
Pollutant transport model

- Time-dependent advection-diffusion with radioactive decay

\[
\frac{\partial c}{\partial t} + \nabla \cdot (uc) = \nabla \cdot \frac{\nu_{sgs}}{Sc_{sgs}} \nabla c - \lambda c + S
\]

- Assumptions
 - Neutral conditions
 - Non-reactive gas
 - No buoyancy or deposition
CFD simulation of atmospheric boundary layer

- LES turbulence modeling
 - Lagrangian scale-dependent dynamic model
 - Resolve large scales of the flow field → u
 - Model small scales → ν_{sgs}

No need for temporal meteorological wind field data

[13]

Radiation model

- **Gamma dose rate**
 - Point-kernel method with buildup factors

 \[\dot{d}_{\gamma,x_0} \sim \phi(x_0, t) \]

- **Beta dose rate**
 - Range of β particles in air = limited
 - Local cloud \sim infinite cloud

\[\dot{d}_{\beta,x_0} \sim c \]

Note: also inhalation dose rate \sim concentration

[Slade, 1968]
[Berger et al., 2000]
Content

- Introduction
- Transport model
- Case study
- Ongoing research
Computational set-up

- **Domain**

 - Domain dimensions:
 - $\delta = 750$
 - $N_z = 125$

 - $8\delta = 6000$ m
 - $N_x = 250$

 - $z_0 = 0.01$ m

- **Pollutants**

 - Xe-133
 - Released from 75 m at constant rate
 - Observations at 1.5 m height

- **Cluster setup**

 - Vlaams Supercomputer Centrum (VSC)
 - 48 CPU
 - +- 4 week of computing

- $3\delta = 2250$ m
- $N_y = 375$
Instantaneous concentration

- Peak concentration near source
- Strong dilution with distance

Color ~ wind speed

Color ~ concentration
Instantaneous observation at $x = 10L$

<table>
<thead>
<tr>
<th>Concentration (a)</th>
<th>Gamma fluence rate (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c^* \approx 0$ most of the time</td>
<td>$\phi \neq 0$</td>
</tr>
<tr>
<td>Large peaks at irregular time intervals</td>
<td>Noisy</td>
</tr>
</tbody>
</table>

![Graph of Concentration](image1)

![Graph of Gamma Fluence Rate](image2)
- Large variation of the beta dose rate
- Limited variability of gamma dose rate
- Time-averaging does not help

Gamma dose assessment at the near-range is not representative for the skin dose rate and inhalation dose rate
Content

Introduction

Transport model

Case study

Ongoing research
Model reduction

- Very long simulation time
 = Not suited for emergency response phase

Faster computation

Accuracy
Case study: Doel Nuclear Power Station
Release from Doel 3

Preliminary results
Copyright © 2014 - SCK•CEN

All property rights and copyright are reserved. Any communication or reproduction of this document, and any communication or use of its content without explicit authorization is prohibited. Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN
Studiecentrum voor Kernenergie
Centre d'Etude de l'Energie Nucléaire

Stichting van Openbaar Nut
Fondation d'Utilité Publique
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSEL
Operational Office: Boeretang 200 – BE-2400 MOL