Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177

Bruno Vanderlinden

What is NM speciality?

Imaging radiology

- Physics
- Diagnostic
- Treatment assessment

Clinical pathology

- Biological marker
- Diagnostic
- Treatment assessment

Nuclear Medicine

Radiotherapy

- Physics
- Radiobiology

Chemotherapy

- Pharmacology
- Biology

⇒ Multidisciplanary approach

Plan

- What is a radiopharmaceutical and how to choose it
- An introduction to a dedicated dosimetry, the MIRD formalism and the pharmacokinetics
- Which equipment used in NM are required (radionuclide calibrator, gamma counter and gamma camera)
- A Presentation of some practical examples with Zr89 labelled to antibodies and octreotide labelled with Ga68 or Lu177

Radiopharmacology

- Pharmaceuticals labelled to a radionuclide
 - Hormone
 - peptide
 - Antibody
 - rituximab

Physical properties

- Physical half lives
 - Short ≈ hours
 - => Diagnostic
 - Long ≈ days
 - => Diagnostic for long biological half-lives
 - => Therapeutics
- Types of emissions
 - Gamma
 - Beta
 - Alpha
- Energies of emissions
- Intensities of emissions
- Chemical properties (binding, mass,...)

68Ga diagnostic short half-live

- Electron capture or beta + emissions (88%)
- 2 gamma after annihilation of beta +
- TVL = 17 mm Pb

89Zr diagnostic long half-live

- Electron capture or beta + emissions (23%)
- 2 gamma after annihilation of beta +
- TVL = 32 mm Pb

90Y therapeutic

Maximum Range of Beta in Air: 9 m

Maximum Range of Beta in Water: 11 mm

177Lu therapeutic

113 & 208 keV

- Half-life < nanosecond
- TVL = 2.1 mm Pb

Committee on Medical Internal Radiation Dose (MIRD)

- Radiation dosimetry provides the fundamental quantities used for radiation protection, risk assessment, and treatment planning.
- The MIRD Committee develops standard methods, models, assumptions, and mathematical schema for assessing internal radiation doses from administered radiopharmaceuticals.
- The virtue of the MIRD approach is that it systematically reduces complex dosimetric analyses to methods that are relatively simple to use, including software tools for experimental and clinical use.

The MIRD Formalism

Absorbed fraction

$$f(x, E_0) = \frac{E_0}{E_0}$$

Absorbed fraction by mass

$$F\left(\mathbf{x}, E_{0}\right) = \frac{f\left(\mathbf{x}, E_{0}\right)}{dm}$$

Mean absorbed dose Gy [J/Kg]

$$\overline{D} = \frac{E}{dm} = \frac{f(x, E_0) \cdot E_0}{dm} = F(x, E_0) \cdot E_0$$

Dose in a volume

$$D(k \leftarrow h) = \frac{E}{m_k} = \frac{\varphi(k \leftarrow h) E_0}{m_k} = \Phi(k \leftarrow h) E_0$$

- D =mean dose in target volume
 - if radiations are non-penetrating

$$\varphi_i(k \leftarrow h) = 0 \quad \text{if } k \neq h \quad \to \quad D(k \leftarrow k) = \frac{E_0}{m_k}$$

$$\varphi_i(k \leftarrow h) = 1 \quad \text{if } k = h \quad \rightarrow \quad D(k \leftarrow h) = 0$$

Radionuclides

$$\dot{D}(t)_{(k \leftarrow h)} = A_h(t) E_0 \Phi(k \leftarrow h)$$

- mean dose rate in target k at time t for source h with one type of radiation of energy E0
- if i is a specific type of particle with
 - Ei its energy
 - ni the number of particles of type i emitted per transition
 - \rightarrow Δi is the mean energy per transition for radiation i in J/(Bq.s), and Δ the total energy per transition

$$\Delta_i = k \; n_i E_i \qquad \Delta = \sum \Delta_i = K \sum n_i E_i$$

the dose rate is the sum of all radiation types

$$\dot{D}(t)_{(k \leftarrow h)} = K A_h(t) \sum_i n_i E_i \Phi_i (k \leftarrow h)$$

Residence time

$$D_{(k \leftarrow h)} = \int_{t_1}^{t_2} \dot{D}(t)_{(k \leftarrow h)} dt = K \tilde{A}_h \sum n_i E_i \Phi_i (k \leftarrow h)$$

$$\tilde{A}_h \text{ is the cumulated activity}$$

$$\tilde{A}_h = \int A_h(t) \, dt$$

 \tilde{A}_h = total number of transitions in source h calculated from biological data (graphically or numerically)

Residence time is different for each organ-source (diff pharmacokinetics)

$$au_h = rac{ ilde{A}_h}{A_O}$$

MIRD fundamental equation

$$D_{(k \leftarrow h)} = K \tilde{A}_h \sum n_i E_i \, \Phi_i (k \leftarrow h)$$

the factors independent of time are included in the S-factor :

$$S_{(k \leftarrow h)} = K \sum_i n_i E_i \Phi_i (k \leftarrow h)$$

MIRD simplified equation

$$D_{(k \leftarrow h)} = \tilde{A}_h . S_{(k \leftarrow h)}$$

S-factor

$$D = A_0 \tau S$$

- to obtain a dose from an initial activity one must know
 - the residence time
 - the S-factor for the specific geometry
- S-factors calculated using phantoms
 - mathematical: simplified
 - voxelized : from CT or MR data
 - calculation methods analytical Monte Carlo

17

Quantification

Material

- Radionuclide or dose calibrator with a well-established conversion factor for the specific radionuclide and for the acquisition parameters used in routine (container geometry, position in the radionuclide calibrator, liquid volume,...)
- Gamma counter with a well-established conversion factor for specific radionuclide and for the counting parameters used in routine (activity range, volume of liquid, standard vial ...)
- Gamma camera SPECT-CT with a well-established conversion factor for specific radionuclide and for the acquisition parameters used in routine (type of collimator, energy window, activity range,...)
- Imaging processing software (fusion tool, delineation)
- Dosimetry software: Olinda software (provided by MIRD committee)

L

- Wide energy range
- Wide counting range
- Convenient open geometry

- No energy spectrum
- Geometry dependent
- Calibration with a limited set of radionuclides and geometries

Institut Jules Bordet

Gamma counter

- Energy spectrum
- Geometry non-dependent
- ⇒ Montecarlo simulation

- Small counting range
- Non convenient
- Closed geometry

+

- Energy spectrum
- Open geometry

- Collimators
- No vendor calibration
- Low resolution

Partial volume effect

PET/CT

4

- High resolution
- High sensitivity
- Calibrated for positron counting
- Self collimation
- Time of flight

- Irradiate the patient and the worker
- Equipment and radionuclide expensive

Processing software

- Fusion
 - Different modalities
- Contouring
 - Different modalities
- Conversion & correction
 - Counts to activities or dose
 - Partial volume effect
- Exporting
 - Statistic
 - contouring

Dosimetry software: olinda

- Choose the isotope and phantom
 - to determine S-factor
- Insert the residence time calculated with the statistics obtained (which integration?)
- => the dose table

Figure 6: Typical kidney clearance curve integrated with the trapezoid method (a) or exponential fit method (b) in a patient treated with ¹⁷⁷Lu-octreotate.

Adrenals	0.0000	Ovaries	0.0000
Brain	0.0000	Pancreas	0.0000
Breasts	0.0000	Red Mar.	0.0000
GB Cont	0.0000	CortBone	0.0000
LLI Cont	0.0000	TrabBone	0.0000
SI Cont	0.0000	Spleen	0.0000
StomCont	0.0000		
ULI Cont	0.0000	Thymus	0.0000
HeartCon	0.0000	Thyroid	0.0000
Hrt Wall	0.0000	UB Cont	0.0000
Kidneys	0.0000	Uterus	0.0000
Liver	0.0000		
Lungs	0.0000		
Muscle	0.0000	Tot Body/Rem Body	0.0000

Quality Assurance

- Standard Procedure:
 - to optimize the reproducibility of the measurements
- Quality control of the equipment
 - to keep the calibrations
 - to evaluate systematic and stochastic errors
 - to evaluate the derives

Immuno-PET/CT

- Immuno-PET/CT combines the high sensitivity of PET/CT with the specificity of the chimeric monoclonal antibody (mAb) for the antigen expressed on the surface of cancer cells.
- Zirconium-89 is a positron emitter with a half-life of 78.4 hours, which is compatible with the time needed for intact mAb to achieve optimal tumour-to-background ratios.
- Antibody half life in blood 2-4 day

⁸⁹Zr-rituximab Immuno-PET/CT

Immuno Dosimetry: Zr89 to Y90

⁸⁹Zr-rituximab Immuno-PET/CT Antibody half life in blood 2-4 day

1 hour p.i

1 day p.i.

3 days p.i.

6 days p.i.

- % Zr89 is converted in % Y90 in function of her decay
- The Number of Y90 decay is the AUC + Y90 decay for the time remaining

Immuno Dosimetry: Olinda 1.0


```
Organ Doses (mSv/MBq), Nuclide: Y-90 (6,41E01 hr), Adult Male
Calculated: 06.26.2012 at 03:57:23 CEST
                                             Photon
                                                     Total
                                                                      EDE Cont.
Target Organ
                         Alpha
                                  Beta
                                                                                ED Cont.
Kidneys
                          0,00E000
                                   2,29E000
                                             0,00E000
                                                      2,29E000
                                                                      1,37E-01
                                                                                 5,72E-03
Liver
                          0,00E000 2,19E000
                                             0,00E000 2,19E000
                                                                      1,31E-01
                                                                                 1,09E-01
                                             0,00E000
                                                                                 2,68E-01
Lungs
                          0,00E000 2,24E000
                                                      2,24E000
                                                                      2,68E-01
Spleen
                          0,00E000 2,76E000
                                             0,00E000 2,76E000
                                                                      1,66E-01
                                                                                 6,91E-02
Urinary Bladder Wall
                                             0,00E000
                                                                                 1,77E-02
                          0,00E000
                                   3,55E-01
                                                      3,55E-01
                                                                      0,00E000
Effective Dose Equivalent (mSv/MBq)
                                                                      1,11E000
                                                                                 8,54E-01
Effective Dose (mSv/MBq)
```


Tracer: Octreotide

- Somatostatine analog
- Binds on over-expressed receptors of neuroendocrine tumor
- Half-life in blood = 2 hours
- Uptake in kidneys, half-life depending on kidney function of the patient

CANCER BIOTHERAPY & RADIOPHARMACEUTICALS Volume 22, Number 3, Results of Individual Patient Dosimetry in Peptide Receptor Radionuclide Therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC Christiane Wehrmann

Tracer: which octreotide for diagnostic?

100

Time after injection (min)

200

Tracer: which octreotate for diagnostic?

Institut Jules Bord

Selected Organ Dose and ED for Discussed Radiopharmaceuticals

Organ	⁶⁸ Ga-DOTATATE*	⁶⁸ Ga-DOTATOC (<i>12</i>)	⁶⁸ Ga-DOTANOC (13)	¹¹¹ In-DTPA-octreotide (19)	¹⁸ F-FDG (20)
Kidneys (mSv/MBq)	9.21E-02	2.2E-01	8.97E-02	4.5E-01	1.7E-02
Liver (mSv/MBq)	4.50E-02	7.4E-02	3.38E-02	7.0E-02	2.1E-02
Spleen (mSv/MBq)	2.82E-01	2.4E-01	7.25E-02	3.2E-01	1.1E-02
Urinary bladder wall (mSv/MBq)	1.25E-01	7.0E-02	8.36E-02	1.8E-01	1.3E-01
ED (mSv/MBq)	2.57E-02	2.3E-02	1.67E-02	8.0E-02	1.9E-02
Typical IA					
MBq	185	185	185	74	370
mCi	5	5	5	2	10
Estimated ED per scan (mSv)	4.8	4.3	3.1	5.9	7.0

Tracer: wich octreotide for therapy?

Figure 5. Peptide receptor radionuclide therapy using ¹⁷⁷Lu DOTA-TATE and ¹⁷⁷Lu DOTA-NOC in the same patient (scans are scaled to the maximum pixel of both scans).

CANCER BIOTHERAPY & RADIOPHARMACEUTICALS Volume 22, Number 3, Results of Individual Patient Dosimetry in Peptide Receptor Radionuclide Therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC Christiane Wehrmann

Which Marker for therapy?

- Y90
 - Beta- emitter
 - half-life = 2.7 days

- Lu177
 - Beta- emitter decay in Hf177 excited states
 - half-life = 6.7 days
 - Hf177 excited
 - Gamma emitter
 113 & 208 keV
 - Half-life < nanosecond

Conclusion

- Patient Specific internal dosimetry in NM is achievable
- With systematic and stochastic errors
- We need robust and reproducible multisciplanary methodology that allow:
 - to estimate stochastic errors
 - to correct systematic errors (even retrospectively)