²²³Ra-Cl₂

Biodistribution, dosimetry and radiation protection

Cecilia Hindorf

Department of Radiation Physics, Skåne University Hospital, Lund, Sweden Joint Department of Physics, The Royal Marsden NHS Trust, London, UK

Radium

Marie and Pierre Curie discovered radium in 1898

- Glow-in-the-dark paint
 - Dial painters

• Radium soap, creme, water, chocolate, etc

Some Radium-Isotopes

- ²²⁶Ra
 - Marie Curie
 - Unit: 1 Curie = the activity in 1 gram of ²²⁶Ra
 - 1 mCi = 37 MBq
- ²²⁴Ra ankylosing spondylitus
- ²²³Ra treatment of skeletal metastases

Decay data

Decay data

Decay data

Radionuclide	Mode of decay	Halflife
223 Ra $\rightarrow ^{219}$ Rn	α	11.4 d
219 Rn $\rightarrow ^{215}$ Po	α	4 s
$^{215}Po \rightarrow ^{211}Pb$	α	1.8 ms
211 Pb $\rightarrow ^{211}$ Bi	β ⁻	36 min
$^{211}\text{Bi} \rightarrow ^{207}\text{TI}$	α	2 min
$^{207}\text{TI} \rightarrow ^{207}\text{Pb}$	β ⁻	4.8 min
207 Pb \rightarrow -	Stable	-

- 4 alpha emitters
- 2 beta emitters
- 12 gammas
- 6 X-rays

28 MeV per decay

95 % from alphas

Radioprotection

"Normal" protection:

- Gloves
- Shielding (lead pot, etc)
- Time
- Distance
- Fume hood

ICRP 67, Age-dependent doses to members of the public..., (1992)

Biokinetic model of radium in humans and beagles; Polig et al, Health Phys (2004)

- Update of the ICRP model
- ²²⁶Ra
- No dosimetry

High-linear energy transfer irradiation targeted to skeletal metastases by the α-emitter 223Ra: Adjuvant or alternative to conventional modlaities? Bruland et al, Clin Cancer Res (2006)

• Highest effective doses to $(w_R=5)$:

 Bone endosteum 	3700 mSv/MBq
– Liver	180
– LLI wall	110
– ULI wall	48
 Bladder wall 	17

Dosimetry of ²²³Ra-chloride: dose to normal organs and tissues;

Lassmann et al, EJNMMI (2012)

- Based on the model in ICRP67

- Highest effective doses to $(w_R=5)$:
 - Bone endosteum
 Red marrow
 Liver
 LLI wall
 3800 mSv/MBq
 370
 180
 110
 - Colon 73

Dosimetry - comparison

Lassmann et al vs Bruland et al (w_R=5, Sv/MBq)

Organ	Dose coefficients	Dose coefficients
	This work Sv/Bq ^a	70 kg person Sv/Bq ^a
Bone endosteum	3.8E-06	3.7E-06
Breast	1.6E-08	1.6E-08
GI tract		
ULI wall	4.8E-08	4.8E-08
LLI wall	1.1E-07	1.1E-07
Kidneys	1.7E-08	1.6E-08
Liver	1.8E-07	1.8E-07
Red marrow	3.7E-07	1
Lungs	1.6E-08	1.6E-08
Bladder wall	1.7E-08	1.7E-08

A phase 1, open-label study of biodistribution, pharmacokinetics and dosimetry of ²²³Ra-Cl₂

Challenge: To image ²²³Ra

Challenge 1: Emission data

Mother radioisotope	Energy [keV]	Probability [%]
²²³ Ra	122	1.2
²²³ Ra	144	3.3
²²³ Ra	154	5.7
²²³ Ra	269	13.9
²²³ Ra	324	4.0
²²³ Ra	338	2.8
²²³ Ra	84	2.5
²²³ Ra	81	15.2
²²³ Ra	95	11.5
²²³ Ra	12	22.9

Mother radioisotope	Energy [keV]	Probability [%]
²²³ Ra	122	1.2
²²³ Ra	144	3.3
²²³ Ra	154	5.7
²²³ Ra	269	13.9
²²³ Ra	324	4.0
²²³ Ra	338	2.8
²²³ Ra	84	2.5
²²³ Ra	81	15.2
²²³ Ra	95	11.5
²²³ Ra	12	22.9

Mother radioisotope	Energy [keV]	Probability [%]
²²³ Ra	122	1.2
²²³ Ra	144	3.3
²²³ Ra	154	5.7
²²³ Ra	269	13.9
²²³ Ra	324	4.0
²²³ Ra	338	2.8
²²³ Ra	84	2.5
²²³ Ra	81	15.2
²²³ Ra	95	11.5
²²³ Ra	12	22.9

Mother radioisotope	Energy [keV]	Probability [%]
²²³ Ra	122	1.2
²²³ Ra	144	3.3
²²³ Ra	154	5.7
²²³ Ra	269	13.9
²²³ Ra	324	4.0
²²³ Ra	338	2.8
²²³ Ra	84	2.5
²²³ Ra	81	15.2
²²³ Ra	95	11.5
²²³ Ra	12	22.9

Mother radioisotope	Energy [keV]	Probability [%]
²²³ Ra	122	1.2
²²³ Ra	144	3.3
²²³ Ra	154	5.7
²²³ Ra	269	13.9
²²³ Ra	324	4.0
²²³ Ra	338	2.8
²²³ Ra	84	2.5
²²³ Ra	81	15.2
²²³ Ra	95	11.5
²²³ Ra	12	22.9

Mother radioisotope	Energy [keV]	Probability [%]
²¹⁹ Rn	271	10.8
²¹⁹ Rn	402	6.6
²¹⁹ Rn	11	1.0
²¹¹ Pb	405	3.8
²¹¹ Pb	427	1.8
²¹¹ Pb	832	3.5
²¹¹ Bi	351	12.9
²¹¹ Bi	73	1.3

Mother radioisotope	Energy [keV]	Probability [%]
²¹⁹ Rn	271	10.8
²¹⁹ Rn	402	6.6
²¹⁹ Rn	11	1.0
²¹¹ Pb	405	3.8
²¹¹ Pb	427	1.8
²¹¹ Pb	832	3.5
²¹¹ Bi	351	12.9
²¹¹ Bi	73	1.3

Mother radioisotope	Energy [keV]	Probability [%]
²¹⁹ Rn	271	10.8
²¹⁹ Rn	402	6.6
²¹⁹ Rn	11	1.0
²¹¹ Pb	405	3.8
²¹¹ Pb	427	1.8
²¹¹ Pb	832	3.5
²¹¹ Bi	351	12.9
²¹¹ Bi	73	1.3

Mother radioisotope	Energy [keV]	Probability [%]
²¹⁹ Rn	271	10.8
²¹⁹ Rn	402	6.6
²¹⁹ Rn	11	1.0
²¹¹ Pb	405	3.8
²¹¹ Pb	427	1.8
²¹¹ Pb	832	3.5
²¹¹ Bi	351	12.9
²¹¹ Bi	73	1.3

Mother radioisotope	Energy [keV]	Probability [%]
²¹⁹ Rn	271	10.8
²¹⁹ Rn	402	6.6
²¹⁹ Rn	11	1.0
²¹¹ Pb	405	3.8
²¹¹ Pb	427	1.8
²¹¹ Pb	832	3.5
²¹¹ Bi	351	12.9
²¹¹ Bi	73	1.3

²²³Ra – Energy spectrum

²²³Ra – Energy window settings

Challenge 2: Administered activity

- Administered activity of Alpharadin for therapy (6 injections, 4 weeks apart)
 - 50 kBq/kg body weight
 - 3.5 MBq (70 kg)

Challenge 2: Administered activity

- Administered activity of Alpharadin for therapy (6 injections, 4 weeks apart)
 - 50 kBq/kg body weight
 - 3.5 MBq (70 kg)
- Administered activity for biodistribution
 - (2 injections, 6 weeks apart)
 - 100 kBq/kg body weight
 - 7 MBq (70 kg)

Challenge 3: Quantitative imaging

- 3D imaging
 - SPECT: to few photons emitted
- 2D imaging
 - Whole body scans
 - Planar spot images

²²³Ra - Imaging

Sensitivity

10 x 10 x 0.2 cm, perspex

• Partial 'volume' effect

Circles, radii: 5, 7, 10, 15, 25 mm

Spatial resolution

Two line sources, 5 cm apart

• Effective attenuation coefficients

Perspex over source

²²³Ra – Clinical situation

Extrapolation of activity uptake

Species	Whole body weight	%IA/g	%IA/g * WB(weight)
Mouse	19 – 21 g	35 – 40 %IA/g	Appr. 800
Rat	120 – 150 g	6 %IA/g	Appr. 800
Human	70 kg	0.01 %IA/g	Assume 800

Mouse: Henriksen et al, J Nucl Med, 44, 252-259, 2003. Rat: Henriksen et al, Cancer Research 62, 3120-3125, 2002.

²²³Ra – Clinical situation

²²³Ra – Clinical situation

PA

AP

Recommendations when the administered activity is 100 kBq/kg body weight

- 2D imaging
 - Whole body scans: 6 cm/min scan speed
 - Planar spot images: 30 min acquisition time
- Energy window:
 - 82 keV ; 20% width
- Medium energy collimator

Imaging ²²³Ra

Conclusions

- Quantitative imaging of ²²³Ra during therapy is possible
- The sensitivity is the limiting parameter high absorbed dose per decay → injected activity is low
- Imaging of the daughters seems to be difficult

Hindorf et al, Nucl Med Commun. 2012 Jul;33(7):726-32

- Published dial settings for ²²³Ra for commercial dose calibrators
- Dependence on source geometry

 different dial settings for vials and syringes

Bergeron et al, Development of secondary standards for 223Ra; Applied Radiation and Isotopes (2010)

²²³Ra-chloride – Clinical study

- Patients diagnosed with skeletal metastases from hormone refractory prostate cancer
- Two intravenous injections of ²²³Ra-chloride (100 kBq/kg body weight), 6 weeks apart
- Collect pharmacokinetic data after each injection
- Dosimetry

- <u>No</u> specific uptake visible on scintillation camera images in normal organs such as:
 - Kidneys
 - Liver
 - Spleen
- The activity concentration in blood or urine was used to get an upper limit of the absorbed dose.

Dosimetry

- Absorbed dose to the total body: 30 mGy/MBq
- Absorbed doses to:
 - Bone endosteum 2577 mGy/
 Bone marrow 420
 - LLI wall
 - ULI wall
 - SI wall
 - Kidneys

²²³Ra-chloride

Conclusions

- The bio-distribution and pharmacokinetics for the first and second injection are similar.
- The main route of excretion is via faeces
- The activity leaves blood quickly and is taken up in bone.
- No major organs are visible in images.

Dosimetry - comparison

Absorbed dose per injected activity [mGy/MBq]

	Lassmann et al	This study
Bone	-	-
Bone endosteum	790	2577
SI wall	5	7
LLI wall	88	78
ULI wall	35	48
Lung	4	
Spleen	4	
Liver	42	3
Kidney	4	7
Bone marrow	95	420
UB wall	5	1

Bone marrow toxicity model for ²²³Ra alphaemitter radiopharmaceutical therapy Hobbs et al, Phys Med Biol (2012)

Bone marrow

Bone marrow toxicity model for ²²³Ra alphaemitter radiopharmaceutical therapy Hobbs et al, Phys Med Biol (2012)

Dosimetry

Conclusions

- The absorbed dose to bone, bone endosteum and bone marrow are very dependent on the assumptions made
- The absorbed dose to liver is smaller when determined from the measured biodistribution than from the ICRP67 compartment model

Thanks for your attention!

Cecilia Hindorf cecilia.hindorf@skane.se

