Dynamic modelling of the radiological impact of the Fukushima accident on marine biota

Jordi Vives i Batlle
Biosphere Impact Studies Unit, SCK-CEN

International Symposium on the occasion of the 50th anniversary of the Belgian Association for Radiological Protection BVS-ABR – 10 April 2013
The March 11, 2011 earthquake/tsunami

- Levels of radioisotopes 30 kilometres offshore from Fukushima > 10 times those measured in the Baltic and Black Seas during Chernobyl
- "When it comes to the oceans, says Ken Buesseler, a top chemical oceanographer at the Woods Hole Oceanographic Institution, "the impact of Fukushima exceeds Chernobyl"
INTRODUCTION
Introduction – setting the scene

- Large accidental release of manmade radioactivity to the marine environment.
- Main radionuclides: 131I and 134,137Cs
 - smaller contribution of 129,129m,132Te, 136Cs and 133I
- $\sim 10^{16}$ Bq of 137Cs discharged to sea, $\sim 80\%$ between 11 March - 8 April 2011.
 - Reduction with distance by a factor of ~ 1000 over 30-km
 - Short-lived isotopes disappeared by end of May 2011
 - Further land effluents till July 2011
- Contamination gradually dispersing into the Pacific (winds, currents):
 - Still some delayed inputs from the coast
 - A fraction sinking to sediments attached to dead plankton
 - Cs and I retained by macroalgae, fish, crustaceans, molluscs & plankton
Introduction – impact on non-human biota

- Initial studies - maximum dose rates of 0.2 to 5 Gy d⁻¹ (first 3 weeks)
 - Assumes high levels remained constant over the period
- Such dose rates would exceed ERICA screening 'no effects' dose.
 - Possible mutagenic and reproduction effects in fish.
- Exposures reported were based on equilibrium
 - Activity in biota = activity in water x CF
 - Radioactivity was released as a pulse and equilibrium cannot be assumed
- Hypothesis for the early period after the accident:
 Radioactivity levels in marine biota were below the maximum concentrations assumed by equilibrium models, because the turnover time of radionuclides is comparable to the discharge fluctuations. As a result, the doses received by the biota may have been overestimated.
 Possibly reverse trend for longer time periods after the accident.
DESCRIPTION OF APPROACH
Data sources

- Activity concentrations of 131I, 134Cs and 137Cs in seawater, 23 March – 30 July 2011 (TEPCO)
 - Daiichi N and S channels
 - Iwasawa Beach 16 km S of Daiichi discharge
 - Vicinity of Daini discharge point
- Activity concentrations in sediment -29 April – 31 July 2011 (MEXT)
- Additionally, activity concentrations in fish, algae, molluscs - early May and late June 2011 at coastal stations (Greenpeace, analysed at SCK•CEN)
A look at the data
Monitoring data

- Seawater activity peaked at ~20 days and rapidly diminished - 2 orders of magnitude in 60 days
- However, there is no obvious trend for sediment activity, with concentrations sustained over time!
- Indicates the resilience of radioactivity in sediments - biogenic deposition, sorption
- The isotopic ratio $^{134}\text{Cs} / ^{137}\text{Cs}$ is fairly constant at 0.97 ± 0.14 for seawater and 0.81 ± 0.05 for sediment – dominance of fallout ^{137}Cs at lower concentrations?
- ^{131}I in May samples - up to 10^5 Bq kg$^{-1}$ in seaweed due to the higher CF for ^{131}I
- ^{134}Cs and ^{137}Cs are also present in almost identical proportions, with a mean 25% reduction between May and June

http://www.whoi.edu/website/fukushima-symposium/presentation-files
Dose calculations from actual monitoring data

- Based on the ERICA non-human biota dosimetry approach but our model is fully dynamic (time-dependent dose rate calculations)
- Assigned an ERICA marine reference organism to each biota
- Multiply the activity concentrations in biota were multiplied by a dose per unit concentration (DPUC) for internal exposure - template ERICA run
- Locate the nearest seawater and sediment sampling points to a given biota sampling point using an algorithm
- Average the seawater/sediment data within a set distance (20 km) and time (2 days for seawater, 10 for sediment) from each individual biota
- Multiply the activity concentrations in water/sediment by relevant DPUC for external exposure - template ERICA run
- Add internal and external dose
- Compare with ERICA benchmark value of 10 μGy h$^{-1}$ screening value for NHB
Solve model to obtain activity concentrations over time, based on $T_{B1/2}$

- Convert concentrations to time-dependent dose rates using ERICA dose conversion factors, occupancy and radiation weighting factors
- Integrate dose rate curve to give cumulative dose over a 60-day period
- This approach is therefore valid for acute or time-variable exposures
RESULTS AND DISCUSSION
- Exposure in seaweed is dominant, followed by molluscs and fish
- Internal dose rates < $13 \mu\text{Gy h}^{-1}$ of ^{131}I and < $0.12 \mu\text{Gy h}^{-1}$ of Cs (highest in fish)
- Cs doses < $10 \mu\text{Gy h}^{-1}$, ^{131}I marginally above – no likely harm to species
- Internal exposure dominates (factor of 4 - 17,000 for 131I and 0.1 – 17 for Cs)
- Clearly, the equilibrium assumption does not reflect reality!
Doses from dynamic modelling study (example)
Dynamic dose modelling results

- For 131I, maximum modelled dose rates at Daiichi channels = 20 - 25 mGy h$^{-1}$ in macroalgae and 14 – 60 μGy h$^{-1}$ in other species (30 – 40 x lower in outer stations)
- For 134,137Cs, 20 – 60 μGy h$^{-1}$ for all species (20 x lower in outer stations).
- Most exposed organisms: macroalgae receiving 131I near the Daiichi outlets.
 - Highest doses 20 - 30 d post-accident, but falling rapidly in subsequent weeks
- Accumulated 131I dose for macroalgae over the first two months is 0.27 Gy.
- For other species, cumulative 131I doses 2 – 3 orders of magnitude lower
- Away from the Daiini drainage channels, a further order of magnitude below
- For most organisms outside the most immediate area dose rates < 20 μGy h$^{-1}$, with cumulative doses of < 0.1 mGy.
- Internal dose dominates over external from water: 2 – 3 orders of magnitude
Comparison dynamic vs. equilibrium

- Where concentrations in the water increased (30-40 d), dynamic model doses are lower than for an equilibrium model - delayed build-up.
- The trend reverses over the subsequent period – delayed retention.
- Differences most pronounced for the biota with $T_{B1/2}$'s of >10 d (e.g. fish and molluscs for 131I and all species for 137Cs) - 2 – 3 orders of magnitude.
- The dynamic model gives drastically reduced doses at peak discharges
- Comparison with actual doses from nearest biota stations (< 50 km):

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean total dose rate (μGy h$^{-1}$)</th>
<th>Model prediction / measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Macroalgae</td>
<td>Mollusc</td>
</tr>
<tr>
<td>I-131 dose rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Iwasawa / Daini (equilibrium model)</td>
<td>5.15E+04</td>
<td>1.76E+02</td>
</tr>
<tr>
<td>Mean Iwasawa / Daini (dynamic model)</td>
<td>9.24E+00</td>
<td>2.25E-01</td>
</tr>
<tr>
<td>Mean monitoring data</td>
<td>6.38E+00</td>
<td>1.12E-01</td>
</tr>
<tr>
<td>Cs-134 dose rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Iwasawa / Daini (equilibrium)</td>
<td>3.02E+03</td>
<td>1.66E+03</td>
</tr>
<tr>
<td>Mean Iwasawa / Daini (dynamic model)</td>
<td>1.66E+00</td>
<td>1.58E+00</td>
</tr>
<tr>
<td>Mean monitoring data</td>
<td>1.27E-01</td>
<td>1.12E-01</td>
</tr>
<tr>
<td>Cs-137 dose rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Iwasawa / Daini (equilibrium model)</td>
<td>3.78E+03</td>
<td>2.08E+03</td>
</tr>
<tr>
<td>Mean Iwasawa / Daini (dynamic model)</td>
<td>2.23E+00</td>
<td>2.03E+00</td>
</tr>
<tr>
<td>Mean monitoring data</td>
<td>1.33E-01</td>
<td>9.12E-02</td>
</tr>
</tbody>
</table>
CONCLUSIONS
Conclusions

- <3% of the discharged Cs remains in coastal waters - all 131I decayed
- There is persistent radioactivity adsorbed onto the sediment
- Radioactivity entering the marine biota
- Exposure in seaweed predominates; then molluscs and fish
- Biota doses in the first weeks post-accident initially overestimated due to assuming equilibrium between the water and the organisms
- Initial estimates reduced by 3 orders of magnitude, illustrating the importance of using dynamic modelling
- But for the earlier part of the accident, doses are all below the ERICA 10 μGy h$^{-1}$ screening level (except perhaps at a few hot spots)
- The only significant exposures would have been to 131I in seaweed in the earlier part of the accident, confirmed by our dynamic modelling study
Radionuclide levels in fish off Fukushima are highly variable but remain elevated, indicating a delayed source of radiation => demands further investigation

We are in the period where doses will be approach equilibrium from above

Levels up to 10000 Bq kg\(^{-1}\) Cs give < 20% of 10 \(\mu\)Gy h\(^{-1}\)

Environment not compromised, but long-term follow-up is scientifically advisable