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Hadron/Proton Therapy Advantages 

 Hadron interactions with matter: 
 Maximal energy losses at the end of hadron 

range (Bragg peak); 

 Particle range changing with energy 

 1H: 70 MeV to 230 MeV (32 cm in water) 

 Highly ionizing particles. 

 Advantages wrt classical RT: 
 Precise control of the dose delivered to the tumor 

 Reduction of dose delivered to healthy tissue, 

sparing critical organs located behind tumor. 

 Larger radiobiological efficiency                        

(RBE ~ 2 to 3 for 12C ions).  
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Proton Therapy Center by IBA 

 IBA has installed its first PT system at Massachusetts General Hospital (MGH) 

in Boston (2000). 

 IBA is now the world leader in Proton Therapy with more than 20 centers 

already installed or in construction in USA (10), Europe (8) and Asia (3). 
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ProteusONE: Compact PT System 

Single-room system equipped  

with a superconducting cyclotron 

and a compact gantry. 

18 meters 
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Radiation Sources in Cyclotron & Treatment Rooms 
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Neutrons and photons are produced at various locations along beam path when protons hit 

matter 

Collimator (70-230 MeV on Ta) 

Cyclotron (230 MeV on Cu/Fe) 

Degrader (230 MeV on C) 

Momentum slit (70-230 MeV on Ni) 

Nozzle (70-230 MeV on Brass) Patient (70-230 MeV on Tissue) 

Divergence slits (70-230 MeV on Ni) 
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Gantry rooms Fixed beam room Cyclotron room 
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Secondary Radiation (1) 

Yields of secondary particles depend on beam energy and target materials 
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Secondary Radiation (2) 

Production of secondary neutrons: 
• Intranuclear cascade         high-energy neutrons, mostly forward emission 

• Target nuclei evaporation  neutrons < 10 MeV, isotropic emission 

M.M. Meier et al, Nucl. Sci. Eng. 104, 339 (1990) MCNPX simulation 
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Neutron Attenuation in Concrete (1) 
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NCRP-144: Radiation Protection for Particle Accelerator Facilities (2005) 

 Proton Interactions with matter: 

 Secondary neutrons with energies up to 230 MeV 

 Continuous energy spectra and strong Q variations 

 For a wide and monoenergetic neutron beam traversing a shielding with thickness z: 

              H(z) = H0 e
-z/l 



Protect, Enhance, and Save Lives - 10 - 

Neutron Attenuation in Concrete (2) 
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 Strong variation of TVT0 with Q due to differences in energy spectra. 

 TVT0  TVTe because of neutron spectrum hardening with shielding depth. 

TVT0 

TVTe 

H(z) = H0 10-z/TVT 
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Monte Carlo Transport Codes 

 General purpose Monte Carlo (MC) codes allow the transport of 

electrons, photons, neutrons, protons and heavy ions in matter 

from low energy (1 keV) to the TeV range: 

 MCNPX – FLUKA – GEANT4 – PHITS 

 These codes simulate all possible interactions + generate and 

transport secondary particles. 

 Proton and neutron transport in MCNPX (Mix&Match): 

 Based on nuclear database LA150 up to 150 MeV 

 Based on nuclear models above 150 MeV 

 Various intranuclear cascade and evaporation models available 

in MCNPX 2.7.0 (Bertini, INCL4, CEM03) 
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Shielding Design for PT Centre 

 3D modelling of whole facility using MCNPX: cyclotron room and treatment 

rooms. 

 Development of a patient case mix based upon clinical requirements. 

 Conversion to beam data  set of beam energies and workloads. 

 Simulation of all major radiation sources for each clinical indication and 

computation of resulting ambient dose equivalent H*(10) or effective dose 

E(AP), using ICRP-74 fluence-to-dose conversion factors for neutrons and 

photons. 

 Sum of all radiation sources and clinical indications to determine the annual 

H*(10) values. 

 Determination of shielding thicknesses based upon local regulations for 

controled and public areas. 
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PT Centre Modelling with MCNPX (1) 
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PT Centre Modelling with MCNPX (2) 
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Cyclotron Room: Side Wall 
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Gantry Room: External Wall 
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Validation of MC Codes 

 Shielding design of our PT centres relies mostly on 

MC simulations using MCNPX. 

 Validation of these simulations: 

 Benchmarking of MCNPX for the production of 

secondary neutrons using LANL data. 

 Measurements of ambient dose equivalents around 

PT equipment using wide-energy range neutron 

detectors (FREDONE project - ISIB-ULB-IBA 

collaboration) 
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MC Validation: Neutron Generation (1) 

Secondary neutron yields measured by Meier’s team at LANL: 
• Proton beams 113, 256, 597 and 800 MeV 

• Stopping-length and thin targets Be, B, C, Al, Fe, W, Pb, 238U 

• Measured data available in EXFOR database 

M.M. Meier et al,  

Nucl. Sci. Eng. 110, 289 (1992) 
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MC Validation: Neutron Generation (2) 

Comparison of energy-integrated yields obtained for 

256 MeV protons impinging on various thick and thin targets 
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MC Validation: Neutron Detection (1) 

Special neutron detector needed to measure H*(10) with high-energy neutrons  

 WENDI-2 from Thermo Scientific able to detect neutrons up to 5 GeV. 

Tungsten powder shell to 

generate (n,xn’) reactions 

WENDI-2 

Andersson-Braun 

Eberline 
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MC Validation: Neutron Detection (2) 

• Measurements performed at WPE in Essen, Germany.  

• Comparison of ambient dose equivalent H*(10) measured along cyclotron access 

maze and MCNPX prediction. 
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Activation Studies 

 Neutron-induced activation processes: 

 Inelastic collisions (spallation processes) 

 Neutron capture (n,g) 

 MC codes are also very usefull for these activation studies: 

 Air and cooling water activation  release strategy. 

 Shielding concrete activation  building decommissioning. 

 Activation of PT components (Cyclotron, magnets, beam shaping 

devices)  personal radioprotection and long-term decommissioning.  

 Codes such as FLUKA and PHITS allow the prediction of the whole 

history, from nuclear reactions to specific activities or dose rates after 

some cooling period. 
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Conclusions 

 Proton therapy offers significant improvements in cancer 

therapy compared to classical radiotherapy. 

 Interaction of medium-energy protons leads to the production 

of complex fields of secondary neutrons and photons. 

 General purpose Monte Carlo simulation codes are ideal tools 

to deal with these mixed fields for radioprotection studies: 

 Shielding design for PT facilities 

 Neutron-induced activation mechanisms 

 MC benchmarking generally shows good agreement between 

MC predictions and measured data. 
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