Skin dose rate conversion factors after contamination with radiopharmaceuticals: influence of contamination area, epidermal thickness and percutaneous absorption

P. Covens
Skin contamination radiopharmaceuticals?

Directly
- Spills
- Removing needles/catheters
- Body fluid of patients / laboratory animals

Cross contamination
- Contaminated surfaces
- Contaminated tools / protective equipment

High amounts can lead to high skin doses
Refresher: skin structure

~ 70 µm on most body sites

Sensitive basal layer
Refresher: skin dose in radiation protection?

Equivalent skin dose H_{skin} (Sv)

- Special occupational skin dose limit for localised exposures: 500 mSv.y$^{-1}$
- To be averaged over any 1 cm2 area of exposed skin, regardless of the area exposed, at the nominal depth of nominal depth 70 µm.
 - Highest contaminated 1 cm2 important!
- Approached by operational quantity “$H_p(0.07)$”
Incidence after survey in the field of nuclear medicine

Mean incidence: 40 cases out of 560 inspections (7%)
 Mostly very localised (80% at volar fingertips)
 Contamination activities over 1 cm2: 0.2 – 500 kBq
Calculation of cumulated skin dose

2 important factors:

- Contamination activity (Bq) + course of the contamination activity in time

- Radionuclide related equivalent skin dose rate conversion factor ($\text{mSv.h}^{-1}.\text{Bq}^{-1}$)
Quantification of the activity of a skin contamination

Limited accuracy with common contamination monitors

Calibrated gamma spectrometer

- Enables to identify/quantify the contamination activity accurately
- Quantification over 1 cm2 (1cm2-collimator)
Contamination area

Contamination spot

Detector

Measured activity: 1 kBq

Contamination area = 1 cm²

Skin surface
Simplified geometry
MCNP-simulations

Air

Skin tissue

Disk source of 1 cm2

Dose averaging area 1 cm2
(basal layer epidermis)

70 µm

Equivalent skin dose = energy deposition over 1 cm2 area
Influence of contamination area (MCNP)

Limited underestimation ~ 10%
If 1 cm² is used
Low-energy electrons in skin contamination dosimetry

Limited dose contribution when handling syringe (electrons stopped in liquid/wall)

Very large dose contribution for contaminations!

Not only for pure β-emitters: ^{18}F, ^{90}Y,…
Also for typical radionuclides:
^{99m}Tc (9% electrons 120 keV)
^{111}In (5% 219 keV, 8% 145 keV,…)

...
Epidermal thickness at the hands

- ~ 70 µm on most body sites
- Wrist: ~ 80 µm
- Volar fingertips: ~ 370 µm
- Back of the hands: ~ 85 µm
- Sides of fingers: ~ 220 µm
- Backs of fingers: ~ 140 µm
- Wrist: ~ 80 µm

Epidermal thickness at the hands is important for understanding potential skin dose after contamination with radiopharmaceuticals.
Influence of epidermal thickness (MCNP)

- **Skin dose after contamination with radiopharmaceuticals**
- **P. Covens**
- **50 years BVS-ABR**
- **April 10, 2013**

General
- Electron dose: 98%
- Dose rate conversion factor: 2.2×10^{-1} mSv/h/kBq

Back of the fingers
- Electron thickness: $140 \mu m$
- Electron dose: 99%
- Dose rate conversion factor: 1.2×10^{0} mSv/h/kBq

Side of the fingers
- Electron thickness: $220 \mu m$
- Electron dose: 98%
- Dose rate conversion factor: 6.1×10^{-1} mSv/h/kBq

Volar fingertips
- Electron thickness: $370 \mu m$
- Dose rate conversion factor: 3.4×10^{-1} mSv/h/kBq

Conversion Factors
- ^{99m}Tc: $>99\%$ Electrons
- ^{18}F: 99% Electrons
- ^{131}I: 98% Electrons

Specific Dose Rate Conversion Factors
- **General**: 2.2×10^{-1} mSv/h/kBq
- **Back of the fingers**: 12×10^{0} mSv/h/kBq
- **Side of the fingers**: 6.1×10^{-1} mSv/h/kBq
- **Volar fingertips**: 3.4×10^{-1} mSv/h/kBq
Decontamination

Typical course:

First decontamination important!

Remaining activity difficult to remove (percutaneous absorption)

Skin dose after contamination with radiopharmaceuticals
P. Covens

50 years BVS-ABR
April, 10 2013
Disk source on the top of skin: a snapshot!

Disk source on top of skin surface = snapshot!!

Detector will hardly observe a difference (D1 >> D2, limited attenuation of photons)

Bolzinger et al. 2010: 1 h after contamination 95% of Na99mTcO$_4$ already located in the dermis! (Study using Franz diffusion cells)
Influence of percutaneous absorption (MCNP)

- **Disk source on top**:
 - 99mTc: 2.7×10^{-3}
 - 18F: 5.1×10^{-1}
 - 131I: 3.4×10^{-1}

- **100% in epidermis**:
 - 99mTc: 1.1×10^{1}
 - 18F: 1.5×10^{1}
 - 131I: 1.2×10^{1}

- **100% in dermis**:
 - 99mTc: 4.1×10^{-2}
 - 18F: 7.0×10^{-1}
 - 131I: 5.4×10^{-1}

- **Bolzinger et al. 2010 (5% epidermis, 95% dermis)**:
 - 99mTc: 4.4×10^{-2}

Skin dose after contamination with radiopharmaceuticals
P. Covens

50 years BVS-ABR
April 10, 2013
Contamination of 500 kBq 99mTc measured over 1 cm2 at the volar fingertips

Follow-up course of contamination by repeated quantification

Calculation total cumulated skin dose using appropriate skin dose rate conversion factors

$H_{\text{skin}} = 809$ mSv

Source on skin surface, 70 µm epidermal thickness

$H_{\text{skin}} = 10$ mSv

Source on skin surface, 370 µm epidermal thickness

$H_{\text{skin}} = 165$ mSv

Percutaneous absorption, 370 µm epidermal thickness
Conclusion

Contamination area: limited influence in calculating \(H_p(0.07) \), averaged over 1 cm\(^2\):

- Use of \(H_p(0.07) \) and source located on the skin surface
 - Miles from equivalent dose to basal layer
 - Epidermal thickness at specific body sites
 - Percutaneous absorption

\(H_p(0.07) \) remains important!

- Practical optimisation of radiation protection
- Proper evaluation needed if values \(\sim \) dose limit
Thank you for your attention!

Read more: *Journal of Radiological Protection* 33:381-393 (2013)