PreDos Study
Evaluation of the radiation dose delivered to premature new-borns in the Belgian Neonatal Intensive Care Units

Jérémie Dabin, Lara Struelens, Filip Vanhavere
SCK•CEN, Radiation protection Dosimetry and Calibration

Jeremie.dabin@sckcen.be
Lara.Struelens@sckcen.be
Neonatal Intensive Care Units (NICU)

- Premature new-borns
 - Less than 37 weeks of gestation
 - Birth weight as low as 500g
- Specific pathologies
- Need for specialised care

- 19 formally recognised NICUs in Belgium
 - Advanced technology
 - Trained healthcare professionals
Importance of dose optimisation in the NICU?

- Frequent use of radiography
 - Diagnostic
 - Follow-up
- Neonates
 - Increased radiosensitivity
 - Longer life-expectancy

Despite their frequent use, the number of radiographs and their contribution to the dose were widely unknown in Belgian NICU...

Objectives

- Overview of the local and national doses...
 - Per Examination
 - Entrance Surface Kerma (ESK), Kerma Area Product (KAP)
 - Organ doses
 - Per patient’s stay in the NICUs
 - Number of examinations,
 - Cumulative doses

- ...for dose optimisation purposes
 - National reference dose levels
 - Recommendations for Good Practices
Material and methods

- Eligible study subjects
 - Premature neonates (less than 37 weeks of gestation)
 - 3 weight categories: (<1000 g, [1000 - 2000 g], >2000 g)

- 17 Belgian NICUs (of 19) participated in the study
 - Evenly distributed between the three geographic regions

- The most commonly performed radiographs were studied
Material and methods

- Collection of theoretical protocols (if any)

- Data collected for at least 40 examinations per centre
 - X-ray system characteristics
 - Radiograph settings
 - Tube voltage (kVp), tube load (mAs)
 - Focus-skin distance (FSD), Focus-detector distance (FDD)
 - Patient’s characteristics
 - Weight, height
 - Gestational age, pathology
Material and methods
Dosimetric quantities in the NICU

Entrance Surface Kerma (ESK)

- Kerma at intersection of the X-Ray beam with the entrance surface of the patient

- **Calculations** based on
 - examination settings and tube output measurements (OP)
 \[ESK = OP_{kVp} \times mAs \times FSD^{-2} \]

- Individual cumulative dose
 \[Dose_{tot} = \sum_{cat_i} \sum_{type_j} (Dose_{av,ij} \times N_i) \]
Material and methods
Dosimetric quantities in the NICU

Kerma Area Product (KAP)

- Product of **kerma and irradiated surface**
 - Kerma (Gy) ~ examination settings (mAs, kVp,...)
 - Area (m²) ~ collimation

Easily available in practice
- Ionisation chamber mounted on the x-ray system
- Available in 15 centres (of 17 participants)
Data collection
Mostly chest and combined chest-abdomen examinations, less abdomen examinations

Complete sample

Weight categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete sample</td>
<td>499</td>
<td>60%</td>
</tr>
<tr>
<td>Complete sample</td>
<td>83</td>
<td>10%</td>
</tr>
<tr>
<td>Complete sample</td>
<td>248</td>
<td>30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight category</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><1000g</td>
<td>139</td>
<td>58%</td>
</tr>
<tr>
<td>1000g<...<2000g</td>
<td>241</td>
<td>60%</td>
</tr>
<tr>
<td>>2000g</td>
<td>53</td>
<td>28%</td>
</tr>
<tr>
<td>>2000g</td>
<td>119</td>
<td>62%</td>
</tr>
</tbody>
</table>
Protocols

- Overview of protocols in Belgium
 - Specific protocol defined in 16 (of 18 centres)
 - Mostly weight-specific

<table>
<thead>
<tr>
<th>Hospital A</th>
<th>Detector plate under the baby</th>
<th>weight (g)</th>
<th>kVp</th>
<th>mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><500</td>
<td>50</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>500</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1000</td>
<td>55</td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospital A</th>
<th>Detector plate inside the bucky table</th>
<th>weight (g)</th>
<th>kVp</th>
<th>mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><500</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>500</td>
<td>52</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1000</td>
<td>57</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospital D</th>
<th>weight (g)</th>
<th>kVp</th>
<th>mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-800</td>
<td>66</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>800-2000</td>
<td>70</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>2000-4500</td>
<td>73</td>
<td>0.71</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospital G</th>
<th>weight (g)</th>
<th>kVp</th>
<th>mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>60</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospital I</th>
<th>weight (g)</th>
<th>kVp</th>
<th>mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>63</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>63</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>63</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>66</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>70</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>70</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>70</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td>70</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>73</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>73</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospital M</th>
<th>weight (g)</th>
<th>kVp</th>
<th>mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1000</td>
<td>63</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>1000-2000</td>
<td>77</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>2000-3000</td>
<td>81</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>>3000</td>
<td>81</td>
<td>1</td>
</tr>
</tbody>
</table>
Dose overview per single chest examination
Large spread of ESK and KAP

- **ESK, T**: 12 to 157 μGy
- **TA**: 8 to 117 μGy

- **KAP, T**: 1 to 14 mGy.cm²
- **TA**: 4 to 28 mGy.cm²

- Large interhospital spread of the median ESK and KAP (ratio 13:1 and 15:0) are observed
- Trends observed for ESK are not always similar for KAP (ex: K, Q)

Why such variations in dose?
Technical parameters in practice:

- **Tube load, T**
 - Median: 0.3 to 4 mAs
 - Ratio 12:1

- **Tube voltage, T**
 - Median: 44 to 77 kVp
 - European guidelines: 60 to 65 kVp

- **FSD**
 - Median: 55 to 93 cm
 - Min/max: 23 to 97 cm

- Explains the large dose spread
- Following the protocol is not common practice
Dose overview per single chest examination

- Usually increase in dose with weight category
 - Explained by the examinations settings defined in the protocol
Usually increase in dose with weight category

- Explained by the examinations settings defined in the protocol

→ Need for optimisation and harmonisation of the practice!
Skewed distribution
Wide inter- and intra-hospital variation
- From 1 to 71 examinations
- ~50% patients undergo less than 5 examinations

Interest of investigation of relation between underlying pathology and number of examinations
- Skewed distributions
 - 22% patients received less than 50 µGy
 - 52% patients received less than 150 µGy
 - 6% patients received 1 mGy or more

- High cumulative ESK due to high number of examinations and/or high ESK per examination
Organ doses

- **Calculated** with PCXMC (Monte Carlo simulation)

- Calculated with **standardised field size** (radiologists' advice)
 - Wide deviation in practice; inappropriate field positioning
Cumulative organ doses

- Organ doses > 50 µGy
 - 14% for thyroid
 - 21% for bone marrow
 - 46% for colon
 - 63% for lungs
 - 79% for breast

- Narrow distributions for thyroid and bone marrow
- Highest doses to the lungs and the breast (included in the majority of the examinations)
Objectives

- Overview of the local and national doses...
 - Per Examination
 - Entrance Surface Kerma (ESK), Kerma Area Product (KAP)
 - Organ doses
 - Per patient’ stay in the NICUs
 - Number of examinations,
 - Cumulative doses

- ...for dose optimisation purposes
 - National reference dose levels
 - Recommendations for Good Practices
Diagnostic Reference Levels

In theory (ICRP 73)
- Optimisation tools for identification of unusually high doses
- Trigger for corrective measures if exceeded
- 75th percentile of the dose distribution for a specific examination

![Dose distribution graph]
- 75% below DRL
- 25% above DRL
Diagnostic Reference Levels

In practice
- In terms of ESK and KAP
- Examination specific
 - Sufficient number of data collected for chest (T) and combined chest-abdomen (TA)
 - Preliminary levels for abdomen (A)

<table>
<thead>
<tr>
<th>ESK (μGy)</th>
<th><1000g</th>
<th>1000g...<2000g</th>
<th>>2000g</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25<sup>th</sup></td>
<td>75<sup>th</sup></td>
<td>25<sup>th</sup></td>
<td>75<sup>th</sup></td>
</tr>
<tr>
<td>T</td>
<td>21</td>
<td>40</td>
<td>19</td>
<td>47</td>
</tr>
<tr>
<td>TA</td>
<td>24</td>
<td>47</td>
<td>27</td>
<td>51</td>
</tr>
<tr>
<td>A</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KAP (mGy.cm²)</th>
<th><1000g</th>
<th>1000g...<2000g</th>
<th>>2000g</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25<sup>th</sup></td>
<td>75<sup>th</sup></td>
<td>25<sup>th</sup></td>
<td>75<sup>th</sup></td>
</tr>
<tr>
<td>T</td>
<td>1.1</td>
<td>5.1</td>
<td>3.7</td>
<td>7.1</td>
</tr>
<tr>
<td>TA</td>
<td>5.8</td>
<td>9.8</td>
<td>7.7</td>
<td>11.5</td>
</tr>
<tr>
<td>A</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
In practice

- **< 25th percentile**: most optimised practices
- **> 75th percentile**: Identification of highest doses

→ Local dose assessment and dose optimisation strategies
Recommendations for Good Practices

- **Well-defined protocol**
 - Facilitates dose optimisation
 - Avoids inter-operator variations

- **High kVp coupled to low mAs**
 - Eliminates soft part of X-rays
 - European Commission guidelines for chest examinations: 60 to 65 kVp
 - Lowest mAs achievable

- **High FSD/FDD**
 - No significant image quality loss
 - Ex: Increase of FSD from 72 to 80 cm: ESK decreases by 20%

- **Appropriate collimation**
 - Avoids unnecessary organ irradiation from diagnostic point of view
 - Decreases quantity of scattered radiation
 - Recommendation to record KAP
Recommendations for Good Practices (continued)

- Image quality was not evaluated in the study
 - should always be accounted for during the dose optimisation process!!
Conclusions and perspectives

- National overview of **examinations settings**, and the resulting doses (**ESK and KAP**), for the three most performed radiographs in the NICUs.

- Distribution of **number of examinations** and **cumulative dose** per stay

- **National DRLs** in terms of ESK and KAP were defined for chest and combined chest-abdomen radiographs.

- **Recommendations** on radiograph settings for dose reduction.

 → Available on the website of the AFCN•FANC

Perspectives:

→ **Evaluation of doses coupled to image quality**

→ **Investigation of the effect of the underlying pathology**
Copyright © 2013 - SCK•CEN

PLEASE NOTE!
This presentation contains data, information and formats for dedicated use ONLY and may not be copied, distributed or cited without the explicit permission of the SCK•CEN. If this has been obtained, please reference it as a “personal communication. By courtesy of SCK•CEN”.

SCK•CEN
Studiecentrum voor Kernenergie
Centre d’Etude de l’Energie Nucléaire
Belgian Nuclear Research Centre

Stichting van Openbaar Nut
Fondation d’Utilité Publique
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS
Operational Office: Boeretang 200 – BE-2400 MOL

SCK•CEN
STUDIECENTRUM VOOR KERNENERGIE
CENTRE D’ETUDE DE L’ENERGIE NUCLEAIRE